

CRESCENT
SOFTWARE, INC.

PDQComm
Communications Support for P.D.Q. And
Microsoft BASIC

Entire contents Copyright ©1990-1994 by David Cleary, Ethan Winer and Crescent Software.
POOComm was written by David Cleary, with contributions by Nash Bly and Ethan Winer. This manual was writ­
ten by Ethan Winer and Dave Cleary, and was designed and typeset by Jacki W. Pagliaro.
No portion of this software or manual may be duplicated in any manner without the written permission of Cres­
cent Software.
All tradenames referenced herein are property of their respective owners
Crescent Software

~/d~:,::r/vi;i~888
(203) 438-5300
2nd Reprint - March, 94

LICENSE AGREEMENT

Crescent Software grants a license to use the enclosed software and printed
documentation to the original purchaser. Copies may be made for back-up
purposes only. Copies made for any other purpose are expressly
prohibited, and adherence to this requirement is the sole responsibility of
the purchaser. However, the purchaser does retain the right to sell or
distribute programs that contain PDQComm routines, so long as the
primary purpose of the included routines is to augment the software being
sold or distributed. Source code and libraries for any component of the
PDQComm program may not be distributed under any circumstances.
This license may be transferred to a third party only if all existing copies
of the software and documentation are also transferred.

WARRANTY INFORMATION

Crescent Software warrants that this product will perform as advertised.
In the event that it does not meet the terms of this warranty, and only in
that event, Crescent Software will replace the product or refund the amount
paid, if notified within 30 days of purchase. Proof of purchase must be
returned with the product, as well as a brief description of how it fails to
meet the advertised claims.

CRESCENT SOFTWIRE 'S LlABILIIY IS LIMITED TO THE PURCHASE PRICE. under
no circumstances shall Crescent Software or the authors of this product
be liable for any incidental or consequential damages, nor for any damages
in excess of the original purchase price.

Table of Contents

PDQCnmm Ta/,/e of CrmlenL.,

Table of Contents

Chapter 1: Introduction
Introduction 1-1
About This Manual 1-2
Installing PDQComm 1-2
PDQComm Overview 1-2
What's On The PDQComm Disk 1-3
P.D.Q. Routines In PDQComm 1-4
Differences Between PDQComm 2.x And Previous Versions 1-5

Enhancements 1-5
New Routines 1-5

Chapter 2: Using PDQComm
Using Integers 2-1
PDQComm Functions 2-1
Compiling and Linking With PDQComm 2-1
Combining Quick Libraries 2-2
Differences Between BASIC and PDQComm 2-3

The BIN, ASC, and LF Options 2-3
The TB[n] Option 2-4
The CD[n], CS[n], DS[n], and OPinl Options 2-4
The RS Option 2-4

PDQComm Syntax 2-4
Handshaking and The Receive Buffer 2-6
Writing A BBS Program with PDQComm 2-8
Comlnput$ Vs. ComLinelnput 2-10
Printing Delays When Using P.D.Q. 2-10
Using PDQComm In A P.D.Q. TSR Program 2-11
Pdqcomm Terminal Emulations 2-11

Locate 2-15
Color 2-15
Cls 2-15
Using Multiple Windows 2-16

Transferring Files With PDQComm 2-17

Crescent Software, Inc. ■

Table of Contenls PDQComm

Chpater 3: Functions and Subroutines
AdjustRecBuffer (Subroutine) 3-1
ASCIIReceive (Function) 3-2
ASCIISend (Function) 3-3
BIOSinkey (Function) 3-3
BIOSPrint (Subroutine) 3-4
Carrier (Function) 3-4
Checksum (Function) 3-5
CloseCom (Subroutine) 3-6
ComEof (Function) 3-6
Comlnput$ (Function) 3-7
ComLinelnput (Subroutine) 3-8
ComLoc (Function) 3-9
ComPrint (Subroutine) 3-9
CRC 16 (Function) 3-10
DTR (Subroutine) . 3-10
FlushBuffer (Subroutine) 3-11
GetComPorts (Subroutine) 3-11
GetLineStatus (Subroutine) 3-12
GetPortConfig (Subroutine) 3-13
OneColor (Function) 3-14
OpenCom (Subroutine) 3-14
OpenComX (Subroutine) 3-16
OverRun (Function) 3-17
ParseComParam (Subroutine) 3-18
Pause (Subroutine) 3-19
PDQExist (Function) 3-19
PDQParse (Function) 3-20
PDQPrint (Subroutine) 3-21
PDQRestore (Subroutine) 3-22
PDQTimer (Function) 3-22
PDQVall and PDQValL (Functions) 3-23
RTS (Subroutine) 3-23
ScanCodes % (Function) 3-24
SendBreak (Subroutine) 3-24
SetActivePort (Subroutine) 3-25
SetCom (Subroutine) 3-26
SetComPrintTO (Subroutine) 3-27
SetDelimitChar (Subroutine) 3-28
SetFIFO (Subroutine) 3-28
SetHandshaking (Subroutine) 3-29
SetMCRExit (Subroutine) 3-29

■ ii Crescent Software, Inc.

PDQCmnm Table of Conlffl/S

SettuxWindow (Subroutines) 3-30
XModemReceive (Function) 3-30
XModemSend (Function) . 3-31
UARTiype% (Function) 3-32
XOff (Function) 3-33
.u.ulnit (Subroutines) 3-33
.u.uPrint (Subroutines) 3-34

Chapter 4: Communications Tutorial
An Introduction To Serial Communications 4-1

Synchronous And Asynchronous Communkations 4-1
Communicating By Bits 4-2
The Parity Bit 4-2
Bidirectional Communications 4-3
Baud Versus Bits Per Second 4-3
RS-232C 4-4
DCE And DTE Devices .. 4-4
Cables, Null Modems, And Gender
Changers 4-7

MODEMS 4-10
UARTs 4-11

The INS8250-B UART 4-11
The INS8250A And NS 16450
UARTS 4-13
The NSl6550/NSl6550A UART 4-13

Summary 4-14

Appendices

Appendix A
Standard Hayes "AT"Commands A-1
S-Registers . A-3

Appendix B
Terminal Emulation Control Codes B-1

TTY Control Codes Recognized by TTYDISP.BAS B-1
ANSI Control Codes Recognized by ANSIDISP.BAS ... B-1
Data General D215 Codes Recognized hy D215D!SP.BAS B-2
VT52 Control Codes Recognized by VT52DISP.BAS ... B-3
VTIOO Control Codes Recognized hy VTI0DJSP.BAS .. 8-3

Crescent Software, Inc. ■ iii

Table of ConlmlS PDQCmnm

If VT52 Compatible Mode B-3
If ANSI Compatible Mode B-4

INDEX

■ iv Crescent Software, Inc.

Chapter 1: Introduction

PDQD,mm Chatper 1: lntroducdon

Introduction

Thank you for purchasing PDQComm. We have made every effort to
provide you with software and documentation that is both effective and
easy to use. If you have a comment, a complaint, or perhaps a suggestion
for another QuickBASIC-related product, please let us know. We want to
be your favorite software company.

Before we begin discussing the contents of the PDQComm disk and
manual, please take a few moments to fill out the enclosed registration
card. Doing this entitles you to free technical support by phone, as well
as ensuring that you are notified of possible enhancements and new
products. Many upgrades are offered at little or no cost, but we can't tell
you about them unless we know who you are! Note, however, that if you
purchased PDQComm directly from us, the mail-in portion of the registra­
tion card may have been removed. In that case, you are already registered.

Please mark the PDQComm product serial number on your disk label or
manual cover. License agreements and registration forms have an irritat­
ing way of becoming lost, and doing this will insure that the number is
handy if you need to contact us. You may also want to note the product
version number in a convenient location; this is stored on the distribution
disks in the volume label. If you ever have occasion to call us for
assistance, we will need to know your serial number, and probably the
version you are using as well. To determine the version number for any
Crescent Software product, simply use the DOS VOL command, which
will display the disk volume label:

VOL A:
Volume in drive A is POQComm 2.XX

Although you can call for assistance, we also maintain a bulletin board
system (BBS), which is operated by Dave Cleary, the author of
PDQComm. You are encouraged to log on by calling 203-426-5958 at
any baud rate (up to 2400 baud) using a N. 8, 1 protocol.

We are constantly improving all of our products, and you may want to call
us periodically and ask for the current version number. Major upgrades
are always announced, however minor additions or fixes are generally not.
If you are having any problems at all-even if you are sure it is not caused
by one of our products-please call us. We support all versions of
QuickBASIC, and can often provide better assistance than Microsoft.

Crescent Softwere, Inc. ■ 1-1

Chapter 1: [ntroducrion PDQComm

About This Manual

This manual is divided into four sections-an overview which describes
what PDQComm is all about, a brief tutorial about writing communica­
tions programs in general, a tutorial section on using PDQComm, and a
reference section that describes each of the PDQComm routines. Besides
the information in this manual, there are several files that contain
additional information you may find useful. Perhaps most important, we
include a few different BASIC terminal programs that show the
PDQComm routines in context. We also provide all of the assembly
language source code for the entire package. You will find this invaluable
if you are interested in learning about communications in general, and
about assembly language in particular.

Installing PDQComm

The .EXE files on the distribution disk are self-extracting archive
programs which contain all of the files for PDQComm. To extract the
various PDQComm program files you should place this disk into drive A,
and then log onto the drive and directory in which you want the files to
be installed. If you are using PDQComm with our P.D.Q. product, we
suggest that you install these files into the same directory that contains
P.D.Q. Once you have created and changed to that directory, simply run
the PDQCOMM.EXE program from Drive A as follows:

A: POQCOMM

This will extract all of the libraries, sample programs, and .MAK files,
and write them to the current directory. If you also want to extract the
assembly language source files you should create a separate directory, and
run the SOURCE.EXE program as well.

Please note that there are a few "empty" files with names like "-" and
"--" that serve as separators between logically grouped sets of files.
Because these files have a zero length they do not take up any disk space
other than the 32 bytes used by all directory entries. However, most hard
disk tune-up programs will not move zero-length files, so you may want
to delete them after you have installed PDQComm.

PDQComm Overview

■

PDQComm is a set of low-level routines that add communications
capabilities to programs written using Microsoft QuickBASIC version 4.0
or later. PDQComm was originally designed to be used with our P.D.Q.
replacement link library, because the P.D.Q. OPEN statement does not
support a communications argument. Therefore. these tools are necessary

7-2 Crescent Software, Inc.

PDQCcmm Chatper 1: Introduction

to obtain that feature with P.D.Q. However, PDQComm is also ideal for
use with regular QuickBASIC programs, to avoid the need for ON
ERROR. Many programmers prefer to avoid ON ERROR when possible,
because of the code size and speed penalties that ON ERROR imposes.

Further, PDQComm offers several enhancements not present in
QuickBASIC, such as both hardware and software handshaking, support
for COM3 and COM4, file transfer protocols, and various terminal
emulations. PDQComm also lets your program change the baud rate and
other parameters while the communications port is open. Finally, all of
the PDQComm routines have been designed to emulate the syntax of the
QuickBASIC routines they replace as closely as possible. For example,
to determine the current buffer location you would use the ComLoc
function, as opposed to BASIC's LOC.

What's On The PDQComm Disk

A number of files are provided with PDQComm, such as libraries, Include
files, and BASIC demonstration programs. All of the files that are present
on the distribution disk are described briefly in the section that follows.

README, if present, contains important information that is not in this
printed manual. In many cases, this information is about new features or
other enhancements you should know about.

PDQCOMM.LIB is the linking library that contains all of the assembly
language routines in PDQComm.

PDQCOMM.RSP is the LIB.EXE response files we used to create
PDQCOMM.LIB.

COMMQB4.RSP is the LIB.EXE response file we used to create COM­
MQB4.LIB.

COMMBC7.RSP is the LIB.EXE response file we used to create COM­
MBC7.LIB.

COMMQB4.LIB contains the same routines that are in PDQCOMM.LIB,
but some of the routines have slight changes to allow them to operate in a
Quick Library, with regular QuickBASIC, and with BASIC 7 when using
near strings.

COMMQB4.QLB is a quick library for use in the QB 4.x environment.

COMMBC7.LIB contains the same routines that are in PDQCOMM.LIB,
but they are meant for use with BASIC 7 when using far strings.

Crescent Software, Inc. ■ 1-3

Chap/er 1: lnlroduclion PDQComm

COMMBC7.QLB is a quick library for use in the QBX environment that
comes with BASIC 7 PDS.

ASMINFO.DOC provides information about PDQCOMM that is of interest
to assembly language programmers.

COMMDECL.BAS contains DECLARE and TYPE statements for the
various PDQComm routines, and is meant to be loaded as an Include file
in your programs.

DEMOTERM.BAS is a simple terminal program that illustrates the
PDQComm routines in context. DEM<JrERM.BAS was written by
Crescent friend Nash Bly.

TSRTERM. BAS is a TSR version of DEM <JrER M. BAS, and it shows how
to implement communications in a TSR program.

MSTERM.BAS is a modified version of the TERMINAL.BAS example
program provided by Microsoft, but adapted to use the PDQComm
routines. This program serves as an example of translating BASIC
communications statements for use with PDQComm, and it also may be
run within the QB editor.

ANSITERM.BAS is another more elaborate program by Dave Cleary, who
also wrote PDQComm. AnsiTerm offers ANSI terminal emulation along
with XMODEM file transfer capabilities. AnsiTerm requires modules
from PDQComm's QuickBASIC routines, as specified in the AN­
SITERM. MAK file.

xxxxDISP.BAS are the terminal emulation routines. xxxx is either TIX,
ANSI, D215, VT52, or VTI0.

ASCIIXFR.BAS contains the ASCII file transfer routines.

XMODEM.BAS contains the XModem file transfer routines.

XSTAT.BAS is a routine that the file transfer routines call to report the
status of the transfer.

All of the remaining files with an .ASM or . INC extension comprise the
assembly language source code for PDQComm.

P.D.Q. Routines In PDQComm

■

Although PDQComm was written primarily for use with our P.D.Q.
product, it will work quite nicely with regular QuickBASIC and B,:'SIC _7
PDS. However, we have included several P.D.Q. extensions with this

1-4 CrfJSCfJnt SoftwarfJ, Inc.

PDQCcmm Chatper 1: Jn1roducdon

library for those people who do not own P.D.Q. A complete discussion
of these routines is given in the reference section that describes the
PDQComm routines.

Differences Between PDQComm
2.x And Previous Versions

All programs written for PDQComm 2.0x will work correctly under 2.S
without requiring any changes to your existing programs. We have added
many new routines, and also added several enhancements. These are
described in this section.

Enhancements
PDQComm now supports having two ports open at once. The only
restriction is that both ports must be using separate IRQ (interrupt request)
lines. This is not a software restriction, but rather a hardware limitation
with the PC bus design. Therefore, you cannot open both COM! and
COM3 at the same time because they both share IRQ 4. Likewise, COM2
and COM4 share the same line (IRQ 3) and may not be used simultaneous­
ly.

PDQComm now restores the state of the communications port to what it
had been when the port was opened, except the baud rate. This allows
PDQComm to work correctly with programs such as FOSSIL drivers,
even if the FOSSIL is "hot" when PDQComm opens the port.

XON/XOFF handshaking is now handled automatically by ComPrint in
the same way RTS/CTS handshaking is. Therefore, the ClearXOffroutine
included with earlier versions of PDQComm is no longer necessary.

PDQComm now supports the NSl6S50 in FIFO mode. Please see
SetFIFO for more information on this.

PDQComm now supports ports with non-standard interrupts. Please see
OpenComX for more information about this.

PDQComm now correctly handles situations where COM2 is the only com
port installed in the machine. If address 2F8h is located in the BIOS data
area where COM! should be, PDQComm will use IRQ 3 instead of 4.
However, you must still use COM I when opening the port.

New Routines
The following describes new routines that have been added to PDQComm
since version 2.0. Several of these routines are from our P.D.Q. and

Crescent Softwere, Inc. ■ 7 - 5

Chapter 1: Introduction PDQOimm

■

QuickPak Professional products, and are included here because of their
usefulness.

AdjustRecBuffer (Subroutine)-Changes the size of the receive buffer along
with the NearEmpty and NearFull points used in handshaking.

BIOSPrint (Subroutine) - This is similar to PDQPrint except it uses the
BIOS to print instead of directly writing to screen memory.

GetLineStatus (Subroutine) - Allows you to obtain the status of all port
lines with one routine.

OneColor% (Function) - OneColor% is from QuickPak Professional, and
it combines a foreground and background color into a single value.

OpenComX (Subroutine) - Allows you to open ports that have non-standard
addresses or use non-standard IRQs. This routine also provides a small­
code way to open a standard port.

PDQExist% (Function) - File exist function from P.D.Q.

PDQPrint (Subroutine) - Fast print routine from P.D.Q. that writes directly
to screen memory.

PDQTimer& (Function) - Small-code TIMER replacement from P.D.Q.
that returns the number of timer ticks as a long integer.

ScanCodes% (Function) - This is used by the terminal emulator routines.
It is like BASIC's INSTR, except it returns the position of control
characters (ASCII values less than 32) in a string.

SetActivePort (Subroutine) - This routine changes the currently active port.
That is, it specifies which port subsequent commands such as OpenCom
and ComPrint are to use.

SetFIFO (Subroutine) - Used to enable or disable the NS 16550A FIFO
mode.

UARTType% (Function) - Returns the type of UART at a specified address.

SetComPrintTO (Subroutine) - Used to set the time-out value of the
ComPrint routine.

1-6 CrBscBnt SoftwarB, Inc.

Chapter 2: Using PDQComm

PDQComm Chap1er 2: Using PDQComm

Using Integers

All of the PDQComm routines that accept numeric arguments expect
integer values or variables. Since BASIC uses single precision variables
by default, it is very important that you add either an explicit percent sign
to each variable name, or place the statement DEFINT A-Z at the
beginning of your program.

PDQComm Functions

Many of the PDQComm routines have been designed as functions as
opposed to called subroutines, where returning a value is sensible.
However, it is imperative that you declare these routines. Unlike called
routines where a DECLARE statement is optional, external functions
written in assembly language must always be declared. In the routines
description portion of this manual, each is identified as either a subroutine
or function. By including COMMDECL.BAS in your programs, this is
all done for you automatically.

Compiling and Linking With PDQComm

Once you have compiled your BASIC program using the BC.EXE com­
piler, you must link it with the assembler routines in the PDQCOMM.LIB
library file. This is very easy to do, and the example below shows how
PDQComm would be linked to a P.D.Q. program.

LINK /noe /nod program • , nul , pdqcomm pdq

If you are using PDQComm with regular QuickBASIC then you would
specify the COMMQB4.LIB file instead:

LINK program , , nul , conrnqb4

And if you plan to use PDQComm with BASIC 7 and want to take
advantage of Far Strings, you would specify COMMBC7.LIB instead:

LINK program , , nul , comnbc7

If you do not compile your program with BASIC 7 far strings (IFS) you
must use COMMQB4.LIB.

Of course, LINK lets you specify more than one library on its command
line, so to link with our QuickPak Professional library you would specify
that as well:

LINK program , , nu l , comnqb4 pro

Crescent Software, Inc. ■ 2-7

Chapter 2: Using PDQComm PDQComm

Combining Quick Libraries

If you need to combine PDQComm with another I ibrary to create a single
quick library, you must use LINK as shown below. This example shows
how to combine PDQComm and QuickPak Professional for use with
QuickBASIC:

LINK /q /seg:500 conmqb4. lib pro lib , , nul , bqlb45. lib

The /seg switch is required because of the number of routines contained
in QuickPak Professional. If you are using QuickBASIC 4.0, the last file
on the link line would be BQLB40. If you are creating a quick library for
the QBX environment, you would use COMMBC7.LIB and PRO7.LIB
respectively, and QBXQLB instead of BQLB45 as the support file at the
end of the LINK command line.

Finally, if you want to create a Quick Library that includes all of the P.D.Q.
extensions as well as the PDQComm routines, you should edit the
QUICKLIB.RSP file and add COMMQB4.LIB to the top of the list as
follows:

COMMQB4.LIB +
Absolute +
BIOSlnky +
BIOSlnpt +

Then, simply run the QUICKLIB.BAT batch file to create the Quick
Library. Please ignore the duplicate definition errors you receive. These
are due to the same routine names being present in both the PDQCOMM
and PDQ library files.

Regardless of the BASIC version you are using, you would start the QB
editor using the /L (Library) option, specifying the Quick Library you just
created. For QuickBASIC 4 and 4.5 do this:

QB [program] /L conmqb4. q lb

And for BASIC 7 (QBX) do this:

QBX [program] /L conmbc7 .qlb

■ 2-2 Crescent Software, Inc.

PDQComm

Differences Between BASIC and
PDQComm

Clrapkr 2: Using PDQCamm

The OpenCom routine in PDQComm emulates the syntax of
QuickBASIC's OPEN "COM" as closely as possible. However, there are
some arguments that OpenCom does not support. To open a communica­
tions port in BASIC you use the OPEN statement specifying a port, a baud
rate, the type of parity, and the number of data and stop bits. You may
also provide one or more optional parameters as shown below.

OPEN "COM!: 9600, N, 8, 1 [.parameters]"

The relationship between these optional parameters and the equivalent
PDQComm arguments is described below.

The BIN, ASC, and LF Options
These parameters are used in QuickBASIC to specify the mode the port
is opened with. The "BIN" (binary mode) option is BASIC's default, and
this is the only mode that PDQComm supports. In binary mode the data
is transmitted verbatim-Tab characters are not expanded to blanks, and
a CHR$(26) is not recognized as an EOF (end of file) marker.

In BASIC, using an "ASC" argument opens the port for ASCII mode
which, in addition to expanding Tabs and recognizing EOF, also sends a
carriage return after every 80 characters automatically.

The BASIC "LF" option is used in conjunction with "ASC", and causes
a CHR$(10) line feed to be sent after every carriage return. PDQComm
does not support either ASC or LF because of their limited usefulness.

ASC and LF are generally used when sending data to a serial printer. Of
course, you can easily simulate those features by printing a carriage return
and line feed manually when needed:

CRLF$ = CHR$(13) + CHR$(10)
CALL ComPrint("'Test message"+ CRLF$)

We recommend thay you define CRLF$ once at the beginning of your
program, to avoid repeated calls to BASIC's CHR$ function later. Each
use of CHR$ adds six bytes, and each string concatenation requires 13
more.

Crescent Software, Inc. ■ 2-3

Chapler 2: Using PDQComm PDQCamm

The TB[n] Option
This parameter specifies the size of the transmit buffer. PDQComm
currently does not support buffered transmission, and therefore cannot
honor this parameter.

The CD[n], CS[n], DS[n], and
OP[n] Options

In BASIC these parameters are used to set the timeout period for the
specified lines to become active when the port is opened. These
parameters often cause more trouble than they are worth, so PDQComm
leaves it up to the programmer to determine whether checking these lines
is important. The OP option sets the timeout period for all the lines to
become active, while the CD, CS, and DS options let you control each
line individually. To check the state of these lines with PDQComm you
would use the GetLineStatus subroutine after the port has been opened.
You can then take appropriate action based on what the line states are.

The RS Option
This BASIC option causes the RTS line to not become active when the
port is opened. It is hard to envision a situation in which this would be
useful, but to achieve the same result using PDQComm, you would call
the RTS subroutine after opening the port.

PDQComm Syntax

Because the syntax for the various PDQComm routines is modeled after
the equivalent statements and functions in QuickBASIC, designing a
communications program using PDQComm will be very similar to doing
the same with QuickBASIC. The short program below shows the mini­
mum steps necessary to create a fully functioning terminal program with
PDQComm.

Please understand that the example programs we will be presenting herein
are not intended to teach you everything you need to write a communica­
tions program. Rather, our purpose is to show how the PDQComm
routines are used. If you are unfamiliar with communications program­
ming in general, we suggest that you become familiar with the various
PDQComm example programs.

Besides using a syntax as close to BASIC's as possible, PDQComm also
returns error information in the BASIC ERR function. This lets you easily
test the success or failure of the most recent operations, without requiring
ON ERROR. Unlike other communications libraries you may have seen,

■ 2-4 CrtJSCtJnt SoftwartJ, Inc.

PDQG»nm Chapter 2: Using PDQComm

PDQComm uses the minimum number of parameters possible. This
greatly reduces the size of your programs, and also improves their speed.

DEFINT A-Z 'all integers please

DECLARE SUB OpenCom (Act ion$) 'same as OPEN "COM ... "
DECLARE SUB ComPrint (Work$) 'same as PRINT #n,
DECLARE SUB C loseCom () 'same as CLOSE #n
DECLARE FUNCTION BIOSlnkey% () 'similar to ASC(INKEY$)
DECLARE FUNCTION ComEof% () 'same as EOF(n)
DECLARE FUNCTION Comlnput$(NumChars) 'same as INPUT$(n,#n)
CALL OpenCom("COMl:2400,N,8,1,RB512,XON") 'open the port
IF ERR THEN oops

PRINT "Error opening the conrnunications port
ENO

ENO IF

DO
Char = BIOSlnkey% 'get what was typed
IF Char = 27 THEN EXIT DO
IF Char THEN CALL ComPrint(CHR$(Char))
IF NOT(ComEof%) THEN

ComString$ = Comlnput$(ComLoc%)
PRINT ComString$:

'exit if it was Escape
'anything else, send it
'was anything received?
'yes, get the characters
'print them on the screen

END IF
LOOP

CALL Cl oseCom

'loop forever

'close the port and end

Here, the OpenCom routine is called specifying communications port I
at a baud rate of 2400, no parity, 8 data bits, and I stop bit. RB512
specifies a receive buffer size of 512 bytes, and XON indicates that
XON/XOFF handshaking is to be performed automatically. We will
discuss handshaking as well as selecting an appropriate buffer size in a
moment.

Once the communications port has been opened, an "endless" loop is
entered that alternately checks for keyboard activity and characters being
received. If a character has been entered at the keyboard it is sent through
the port (unless it was the Escape key). And if any characters have been
received and are waiting to be read, the Comlnput$ function reads all of
them from the receive buffer.

The ComEof% function is used to determine if any characters are waiting
in the buffer, ComLoc% reports how many. and Comlnput$ does the actual
reading. Notice that these functions are identical to the equivalent BASIC
functions EOFO, LOCO, and INPUT$ respectively.

The BIOSinkey function is much more efficient than the regular
QuickBASIC INKEY$, because it returns the integer ASCII value of the

Crescent Software, Inc. ■ 2-5

Chapter 2: Using PDQComm l'DQCamm

key that was pressed. This requires less code in the BASIC program, since
integer assignments and comparisons are simpler than the equivalent string
operations.

Handshaking and The Receive Buffer

In any communications program, data is sent in a continuous stream from
one PC or terminal to another. As characters are received, they are placed
into a special area of memory called a receive buffer. Then, when the
receiving program is ready to read that data, it reads from the buffer rather
than directly from the port. This is an important concept, since it frees
the receiving program from having to contmually poll the communications
port. Of course, all of this is handled transparently for you by the various
PDQComm routines. That is, as data is received by the port it is placed
into the buffer automatically through a system of hardware interrupts.
And when your program asks to read those characters, they are taken from
the buffer.

A receive buffer of IK is more than adequate if you are using a baud rate
of 2400 bps or less, or if handshaking is employed. Handshaking means
that the sender and receiver use a system of tl ags to tell each other when
they are ready. Without handshaking, the sending program will simply
continue to transmit, and the receiving program must be prepared to accept
the characters as quickly as they arrive. When handshaking is employed,
however, a smaller buffer may be used because the receiving program can
tell the sender to stop transmitting before the buffer overflows.

If you are not using handshaking and there may be delays in your program,
for example when you write data to a disk file, then you should specify a
larger receive buffer. Microsoft uses 512 bytes as a default buffer size
for QuickBASIC, but very high baud rates require a larger buffer. Some
hardware interface devices do not support handshaking, so a larger buffer
would be needed in that case as well.

PDQComm supports two types of handshaking-XON/XOFF and
RTS/CTS-and each of these methods will be described in turn. Of
course, regardless of the handshaking method you choose, the remote
terminal you are communicating with must also be using the same method.
Now let's look at the handshaking options PDQComm provides.

XON/XOFF is sometimes called software handshaking because it is done
by sending special characters between systems. (Ctrl-S tells the sender to
stop transmitting, and Ctrl-Q means it is okay to resume.) Software
handshaking is used mostly with modems because there isn't a direct
hardware connection between the two computers. When the receive buffer

■ 2- 6 Crescent Software, Inc.

PDQComm Chapter 2: Using PDQC".omm

becomes nearly full, the PDQComm routines will automatically send an
XOFF character to the remote system to tell it to stop transmitting.

After you have emptied the buffer with the Comlnput$ function, an XON
character will be sent to the remote system, so it knows that it is okay to
resume sending. PDQComm handles this transparently for you so you
don't have to worry about how many characters are in the buffer at any
given time. Likewise, if the remote system sends an XOFF character,
PDQComm will set the PDQComm XOff function to TRUE to let you
know that.

It is important not to use XON/XOFF handshaking if you are transferring
binary files, because the binary information may happen to contain those
control characters. You can enable and disable handshaking after the port
is opened using the SetHandshaking routine.

The other handshaking method supported by PDQComm, RTS/CTS, is
also called hardware handshaking. This is because it is implemented using
two physical lines connected between both systems. When the receive
buffer is almost full, the receiving computer will change the state of its
RTS line, which tells the remote system to stop transmitting. As with the
XON/XOFF method, PDQComm handles RTS/CTS handshaking
transparently for you. If you try to print while the remote has its CTS line
high, you will get a "Timeout" error (error 24). The only way to print if
the remote has its CTS line high is to disable RTS/CTS handshaking with
the SetHandshaking routine. If you get the error while printing a string,
ComPrint will remember where in the string you were, and will resume
from that point when you subsequently send the same string again later.
The example that follows shows this in context.

Text$ = "This is being sent through the communications port."
Retries = 0

DD
CALL ComPrint(Text$)
IF ERR 24 THEN EXIT DO

'attempt to print the string
'anything but a time-out
' error is okay

Retries = Retries + 1 'count how many times it timed out
IF Retries 5 THEN 'more than five means it's

' hope less
PRINT ""I couldn"t print the string.••
EXIT DO

END IF
LOOP

Presently, PDQComm does not support hnth hardware and software
handshaking at the same time. If you actually need to do this, then use
RTS handshaking and look for XON/XOFF characters manually.

Crescent Software, Inc. ■ 2-7

Chapter 2: Using PDQComm

Writing A BBS Program with
PDQComm

PDQComm

The following is not intended to serve as a complete tutorial on writing a
full-featured BBS (Bulletin Board System) program, however a number
of useful tips and techniques will be discussed. PDQComm also includes
several routines that will assist you in writing a BBS program, and these
will be discussed as well. If you would like to see what is involved in
writing a full-featured BBS program, the QuickBASIC source code to the
popular RBBS-PC is available for download from the Crescent Software
Support at BBS (203) 426-5958.

Perhaps most important, when writing a BBS it will be up to you to echo
back everything you receive. For example, when you log on to a
commercial BBS you will observe that everything you type also appears
on your screen. This is because the characters you enter first go from
your computer to the BBS, and then are sent hack to your computer. Your
PC displays everything that it receives, which of course includes those
characters that you transmitted.

One important PDQComm helper is the GetPortConfig routine, which lets
you determine the current port parameters. For example, if you are using
a front end mailer such as BinkleyTerm and a human calls, BinkleyTerm
will transfer control to your BBS program. But how do you know at what
baud rate the caller logged on with? The GetPortConfig routine will
retrieve the current configuration for any valid communications port. It
uses a TYPE variable called ModemType, which is shown below. (This
TYPE is defined in the Include file COMMDECL.BAS. You should
always include this file in your programs. because it also contains
DECLARE statements for all of the PDQComm routines.)

TYPE ModemType
Baud AS LONG
OBits AS INTEGER
Parity AS STRING * I
SBits AS INTEGER

ENO TYPE

You would therefore call GetPortConfig with a variable that has been
dimensioned as ModemType, and then read the current port parameters
from that variable. This is shown in the routine description for GetPort­
Config.

PDQComm also provides a routine called SetCom. Like GetPortConfig,
SetCom uses the ModemType variable, and it lets you change the
parameters of a port that is already opened, without having to close it first.
SetCom is useful if your BBS answers the phone, and the caller logs on

■ 2-8 Crescent Software, Inc.

PDQComm Chapter 2: Using PDQComm

with a different baud rate. You would merely look at the "CONNECT"
string the sending modem transmits, and determine the baud rate from
that. SetCom will then let you modify the baud rate you are using to
accommodate the caller.

Be sure that your modem is configured to return a "verbose" CONNECT
string, so the program will be able to read the baud rate from it. (Our
Practical Peripherals modems use the "ATX4" command for this, which
is the factory default-please consult your modem owner's manual for the
correct command.)

DIM Config AS ModemType 'ModemType is in
' CDMMDECL. BAS

ComParam$ = "COMl:2400,N,B,i,RBI024,XON" 'This is our open string
'Parse Config

CALL ParseComParam(ComParam$, Port, Conf ig, BufLen, Hand$)

CALL DpenCom(ComParam$)

Start:
DO

CALL ComL ineinput(R ing$, 45)

IF Biosinkey% THEN
CALL C loseCom
END

END IF

IF ERR = 0 THEN
IF Ring$ = "RING" THEN EXIT DO

END IF
LOOP
CALL ComPrint("ATA" + CHR$(13))
DD

CALL ComL ineinput(Connect$, 45)

'Open the port

'Wait for the phone to
ring

'Quit if they press any
' key (this is optional)

'If no time-out
'The phone rang so
' answer it

'Tell modem to answer

IF INSTR(Connect$, "CONNECT") THEN EXIT DO 'We have a
' connect ion

IF Connect$ = "NO CARRIER" THEN GOTO START 'No connect ion,
' start over

IF ERR THEN
CALL ComPrint(" ")

GOTO Start

END IF
LOOP
Config,Baud = VAL(MID$(Connect$, B))

'This forces modem to
' hang up
'If time-out, no
' connect ion

'Modem returns baud
' after CONNECT

IF Config.Baud = 0 THEN Config.Baud = 300
CALL SetCom(Conf i g)

'300 baud not reported
'Change port baud

Crescent Software, Inc. ■ 2-9

Chapter 2: Using PDQComm PDQComm

Finally, you should always use the XON/XOFF handshaking method in a
BBS program, since that is what your callers will be using.

Comlnput$ Vs. Comlinelnput

There are two popular methods for retrieving data from a communications
port in BASIC. One is to use the INPUT$ function to read a specified
number of characters at one time; this provides you with full control over
what action is taken for each character. The disadvantage is that your
program may need to combine the characters into a single string, which
requires more effort than simply using LINE INPUT.

The other method is to use the LINE INPUT statement. This is simpler
to use because it returns an entire line at once, and also removes the
carriage return and line feed. However, BASlC's LINE INPUT suffers
from a serious shortcoming when used with a communications port:
control is not returned to your program until the terminating carriage return
is received. If the phone connection is disrupted, or the sender fails to
press Enter, then your computer will literally be disabled until you reboot
it. Therefore, although convenient, LINE INPUT is not well suited for
this use. In the context of a BBS system, using LINE INPUT also
precludes you from being able to echo characters back to the sender.

PDQComm includes replacement routines for BASIC's INPUT$ and
LINE INPUT, and in the latter case, we have added a unique "time-out"
feature that lets your program regain control if a terminating carriage
return is not received within a specified amount of time. When using
ComLinelnput, you tell it the number of seconds to wait for a carriage
return, before timing out and exiting hack to your program. If a carriage
return is in fact received, then the entire line is returned. Otherwise,
whatever has been received thus far is returned, and BASIC's ERR
function is set to 24 which is the code for "Device timeout". ComLine­
Input has several other useful features, and these are described in the
routine description portion of this manual.

Printing Delays When Using P.D.Q.

When using the default P.D.Q. PRINT statement (as opposed to
PDQPrint), it is important that you not print a string that is very long.
Since P.D.Q. uses DOS for its printing (which is slow), it is possible that
some of the data being received will he lost. This is because the DOS
interrupt that PRINT uses disables the communications port interrupt
while it is printing. This is especially important at fast baud rates, where
many characters are received every second. We have found that limiting
the length of a single string printed in one statement to 200 characters will
prevent this from occurring.

■ 2- 10 Crescent Software, Inc.

PDQG,mm

Using PDQComm In A P.D.Q. TSR
Program

Chapter 2: Using PDQCcmm

When you call the OpenCom routine, it uses standard DOS services to
allocate memory for its receive buffer. PDQComm uses DOS "far"
memory, so its buffer will not impinge on BASIC's 64K string memory
area. When you are using PDQComm in a non-TSR P.D.Q. program, the
necessary memory is available and there are no problems. (Unless, of
course, your program is so large or you have so many device drivers and
TSR programs loaded that there really is insufficient memory for the
receive buffer.)

However, most programs, including those written in regular BASIC,
request all available DOS memory when they are loaded. This prevents
DOS from honoring a memory request once the program is running.
P.D.Q. programs release the unneeded memory back to DOS as part of
their startup code, so this is not a problem when you are using P.D.Q. But
when PDQComm is used with a P.D.Q. TSR program, extra steps must
be taken to ensure that enough DOS memory will be available to satisfy
the request by OpenCom. There are two possihle solutions.

One is to open the communications port before calling EndTSR to stay
resident, and this is the simplest choice when that is practical. The other
solution is to manually allocate memory using AllocMem before calling
EndTSR, and then relinquish that memory using ReleaseMem prior to
calling OpenCom. If you plan to close the port and then reopen it later
within the TSR, then you should call AllocMem again immediately after
calling CloseCom. This way your program always "owns" at least enough
memory for the receive buffer.

PDQComm Terminal Emulations

PDQComm offers a variety of windowed terminal emulations. You simply
define a rectangular window on the screen, and PDQComm will handle
displaying and scrolling all of the data in that window. Terminal emulations
allow you to handle special control codes you may receive over the serial
port; for example, codes that affect cursor position, screen colors, and
other display attributes. Perhaps the hest-known set of control codes on
IBM computers are those recognized by the ANSI.SYS device driver.
Since these emulation routines interpret and act on these codes for you,
this precludes the use of BASIC's screen functions such as COLOR or
LOCATE. The text that follows discusses how to simulate these functions.
Note, however, that the overwhelming value afforded by emulating the
ANSI control codes is that ANSI.SYS is not required for your programs
to operate.

Crescent Software, Inc. ■ 2 - 11

Chapter 2: Using PDQComm PDQComm

PDQComm includes several .BAS and .BI (BASIC Include) files to
implement terminal emulation. TERM.BI defines a type variable that is
used by all the emulations, and this variable controls all aspects of the
emulation routines. A discussion of each component in this variable is
given later on. The other .BI files contain declarations for each particular
emulation, and also allocate a named COMMON SHARED variable for
use by the routines. The .BAS files contain the code that actually performs
each emulation.

All of the terminal emulation routines work in the same way, and each is
comprised of only three routines. The routines are named xuxinit,
xuxPrint and Setx.uxWindow, where= indicates the type of terminal
emulation. PDQComm currently offers the following emulations:

TTY • Generic emulation
ANSI - ANSI.SYS emulation
VT52 - Digital Equipment VT52 emulation

VT100 - Digital Equipment VT100 emulation
D215 - Data General D215 emulation

The source code for each emulation is contained in a file named
xuxDISP.BAS, where xx.xx is the emulation name. For example, AN­
SIDISP.BAS holds the routines that perform ANSI emulation. Appendix
B provides a control code reference for each of these emulations.
EMULATE.DOC, if present, contains information on other emulations
that may have been added after the printing of this manual.

To use the terminal emulations, you must use the '$INCLUDE metacom­
mand to add two files to your program. The first include file is TERM .Bl.
This file defines a TYPE structure that is used by all of the emulations to
control the various screen characteristks. The TYPE is defined as
follows:

TYPE TermType
Monitor AS INTEGER
Bios AS INTEGER
Fore AS INTEGER
Back AS INTEGER
TRow AS INTEGER
BRow AS INTEGER
LCo l AS INTEGER
RCol AS INTEGER
CurRow AS INTEGER
CurCo 1 AS INTEGER
Def Fore AS INTEGER
Def Back AS INTEGER

END TYPE

When you call the xxxrinit routine associated with the emulation you are
using, default values are placed into each component of this variable.

■ 2- 72 Crescent Software, Inc.

PDQO>mm Chapter 2: Using PDQCanm

Monitor tells if you have a color or monochrome monitor. The xuxinit
routine checks low memory to see what type of monitor is in use, and
assigns zero if it is a color system, or non-zero for a monochrome system.
To force monochrome, you may manually set this value to -1. This allows
you to force black and white text on a color system if necessary. This
would be desirable when the program is being run on some laptop
computers, or on an older Compaq portable PC that has a CGA adapter
connected to a monochrome monitor.

Bios tells the routines whether you want printing to be perfonned using
direct screen writes, or through the BIOS. Setting this value to -1 (True)
forces screen writes through the BIOS. The default is O (False) for direct
screen writing. This could be important when running under some
multitaskers such as DesqView or DoubleDOS to prevent bleed
"through".

Fore and Back are the current foreground and background colors; the
default values for these parameters is 7 and O respectively. You can change
these values manually to force a color change, as opposed to using the
COLOR statement. For example, to change the foreground color to bright
blue you would use typename.Fore = 9, where typename is named
according to the emulation being used.

TRow, BRow, LCol, and RCol define the window coordinates. By
modifying these values, you can change the portion of the screen that is
used to contain the displayed text. These values are initialized to default
values of 1, 25, I, and 80, which establishes the entire screen as a display
window.

CurRow and CurCol are the row and column that the cursor is currently
located at, and these values change as text is displayed. To manually set
a new cursor position simply assign new values to these parameters,
instead of using LOCATE. Note that these values are an offset from the
current window. For example, if you have defined a window smaller than
full screen, then the location I, I will be in the upper left hand comer of
that window, and not necessarily at absolute location I, I.

The DefFore and DefBack TYPE components are the default screen
colors. These are used by the emulations that require default values, and
are initialized to 7 for foreground and O for background.

Crescent Sohware, Inc. ■ 2 - 13

Chapter 2: Using PDQC.omm PDQComm

The next file that must be included depends on the emulation you are using,
as shown in Table 2-1 below.

EMULATION

TTY
ANSI
VT52
VT100
D215

INCLUDE FILE

TTY.Bl
ANSI.Bl
VT52.BI
VT100.BI
D215.BI

Table 2-1: Emulation Include File Names

These include files allocate a COMMON SHARED variable defined as
TermType, using the name of the emulation used. For example, ANSI.BI
looks like this:

DECLARE SUB Ans i In it ()
DECLARE SUB AnsiPrint (Text$)
DECLARE SUB SetAnsiWindow (WinNum%)

COMMON SHARED /Ansi/ Ansi AS TermType

The syntax for all of the emulation routines is identical, and for clarity all
of the discussions and code samples that follow will use the ANSI routines
as an example. Please note that for every occurrence of the word Ansi,
you may substitute the name of another emulation.

This first example shows how to use the ANSI emulation to create a
window with screen coordinates of (I, I, 24, 80). Specifying line 24 as
the bottom allows you to reserve line 25 for status information. The
following example shows how to define this window:

DEFINT A-Z
'$INCLUDE: 'TERM.Bl'
'$INCLUDE: 'ANSI.Bl'

CALL Ansilnit

Ans i. BRow = 24
CALL AnsiPrint (CHR$(12))

'required include files

'set up defaults for an ANSI window

'set line 24 as the bottom row
'this clears the screen

Since the window has already been initialized to I, I. 25, 80 by Ansilnit,
only the bottom row needs to be changed. From this point on, any text
that is displayed using AnsiPrint will he contained within the window and
scrolled automatically. The PDQComm emulation routines also handle
all of the ANSI escape sequences that are embedded within the text.

■ 2 - 14 Crescent Software, Inc.

PDQCcmm Chapter 2: Using PDQCcmm

Because these emulation routines need to operate independently of BASIC,
you must use them to locate the cursor, set display colors, and clear the
screen, instead ofBASIC's LOCATE, COLOR, and CLS statements. This
is accomplished by using the same escape code the emulation routines are
designed to act on, or by modifying the TYPE variable as described
following.

Locate
To locate the cursor at a specified row and column, set the CurRow and
CurCol components of the Ansi TYPE variable. The next time AnsiPrint
is called, the cursor will be moved there prior to printing. The following
example sets the cursor to 10,40 by assigning the TYPE variable and then
printing an empty string. Of course, it is not mandatory to print a null
string unless you want the cursor to actually be moved. Simple assigning
CurRow and CurCol will force subsequent printing to be performed at the
specified location.

Ansi.CurRow = 10
Ansi.CurCol = 40
CALL AnsiPrint(' .. ')

'set row 10
'and column 40
'move the cursor

Note that you may still use BASIC's LOCATE to tum the cursor on and
off. Also, you may use LOCATE and PRINT to manually print information
outside of the current window. In this case you would do that to print the
status information on line 25. Even though BASIC will temporarily
relocate the cursor to line 25, PDQComm remembers the correct cursor
position within the ANSI window for subsequent calls to AnsiPrint.

Color

Cls

To change the current screen colors you will modify the Fore and Back
portions of the Ansi TYPE variable. For example, the following code
changes the current colors to a black foreground and white background
(inverse):

Ansi .Fore = 0
Ansi .Back = 7
CALL AnsiPrint("This is printed in inverse video")

All of the emulation routines recognize CHR$(12) as a form feed
character, and printing that will clear the current window and position the
cursor at the top left corner:

CALL AnsiPrint(CHR$(12))

Crescent Software, Inc. ■ 2 - 15

Chapter 2: Using PDQCcmm PDQCcmm

Using Multiple Windows
PDQComm allows you to define as many different windows on the screen
as you want, up to the limits of available memory. Creating more than
one window is accomplished by using the SetAnsiWindow routine.
Presently, the code in these routines is commented out to avoid wasting
space if you need only one window. If you intend to use multiple windows,
please examine the comments contained in the ANSIDISP.BAS program
file.

To create multiple windows you must first activate the remarked-out code
in ANSIDISP.BAS, and also set the MaxWindows% constant to the
maximum number of windows you intend to use. Like the SetCom routine
that is used to identify which open communications port will be accessed,
the emulation routines use a similar method. Simply call SetAnsiWindow
indicating which of the windows you plan to address:

CALL SetAnsiWindow(WinNumber%)

The following routine shows how to create four ANSI windows occupying
the four screen quadrants:

DEFINT A-Z

'$INCLUDE: 'TERM.BI'
'$INCLUDE: 'ANSI.Bl'

FOR I = 1 TO 4
CALL SetAnsiWindow(I)
CALL Ansi!nit(I)

NEXT

CALL SetAnsiWindow(I)
Ansi. TRow = 1
Ansi .BRow = 12
Ansi.LCol = 1
Ansi .RCol = 39
CALL AnsiPrint(CHR$(12))

CALL SetAnsiWindow(2)
Ansi. TRow = 1
Ansi .BRow = 12
Ansi .LCol = 41
Ansi .RCol= BD
CALL AnsiPrint(CHR$(12))

CALL SetAnsiWindow(3)
Ansi. TRow = 14
Ans i. BRow = 25
Ansi .LCol = 1

■ 2 - 16

'required include files

'set the active window
'initialize to default values

'address the first window
'assign coordinates of (1.1.12,39)

'clear the screen window

'as above
'using coordinates of (1.41.12,BO)

'clear the screen

'as above
'using coordinates of (14,1,25,39)

Crescent Software, Inc.

PDQComm

Ansi .RCol = 39
CALL AnsiPrint(CHR$(12))

CALL SetAnsiWindow(4)
Ans i. TRow = 14
Ans i. BRow = 25
Ansi.LCol = 41
Ansi.RCol = 80
CALL AnsiPrint(CHR$(12))

Chapler 2: Using PDQC-omm

'as above

The program DEMOWIN.BAS demonstrates using multiple windows and
multiple emulations at the same time. Again, all of the other emulation
routines operate in exactly the same way as the ANSI routines described
here, and the only difference is the routine and file names.

TRANSFERRING FILES WITH
PDQCOMM

PDQComm currently supports ASCII file transfers for text, and
XMODEM file transfers for binary data. The routines that perform these
files transfers are in the ASCIIXFR.BAS and XMODEM.BAS files
respectively. All of these routines have been designed as functions, and
return a completion code to indicate their success or failure as shown in
Table 2-2 below.

0 File sent successfully
1 DOS file error
2 Timeout error
3 Too many errors
4 Receiver cancelled
5 Transmitter cancelled

Table 2-2: File Transfer Return Codes

The file transfer routines call a subprogram named XStat which opens a
window on the screen and reports the status of the file transfer. XStat is
located in the file XSTAT.BAS. If you prefer to create your own reporting
method or have no reporting, simply replace XStat with your own routine.

When XStat is first called at the beginning of a transfer, it saves the
underlying screen contents and then draws a window on the screen. The
first string passed to XStat is printed on the first two lines of the window,
and it is divided into two parts separated hy a vertical har (I). For instance:

CALL XStat("This is line I I And this is line 2")

Crescent Softw11r11, Inc. ■ 2 - 17

Chapter 2: Usi"g PDQComm PDQComm

All subsequent calls to XStat print text on the bottom line of the window.
Calling XStat with a null string ("") tells it that the transfer is complete.
XStat will then close the window and restore the underlying screen. For
more information on file transfers, please see the reference section for the
appropriate routines.

■ 2 - 18 Crescent Software, Inc.

Chapter 3:
Functions and Subroutines

PDQCcmm Chapier 3: Functions &: Subroutines

AdjustRecBuffer (Subroutine)

■ Purpose
AdjustRecBuffer changes the size of the receive buffer, as well as the
near-empty and near-full points used for handshaking.

■ Syntax

CALL AdjustRecBuffer(BuffSize%, NEmpty%, NFull%)

■ Where

BuffSize% is the new size of the receive huffer. If this value is 0, the
buffer is not adjusted but the NearEmpty and NearFull points are changed.
NEmpty% is the near-empty value. If handshaking is used, this is the
point at which the receiver tells the transmitter to resume sending after
having previously told it to stop. NFull % is the near-full value. If
handshaking is being used, this is the point at which the receiver tells the
transmitter to stop sending.

■ Comments

This routine is used to change the default buffer size given when you have
used OpenComX. It is also used to change the handshaking points. The
handshaking points specify when the sender is to stop and resume
transmitting. For example, if the buffer size is 1,024 bytes, you could tell
AdjustRecBuffer that it is to send a Stop signal when 900 characters have
been received. This affords some measure of safety, instead of allowing
the buffer to fill completely. Likewise, you can specify at what point a
Resume signal is sent. Rather than wait for the buffer to become empty,
you could tell AdjustRecBuffer to have the sender resume when I 00 bytes
remain.

Note that if you change the buffer size, the current contents of the receive
buffer will be lost. You can specify a receive huffer length between 128
and 32,767 bytes. 1,024 bytes is adequate for most purposes. The only
error checking done on the near empty and full values is to ensure they
are greater than O and less than the receive huffer size. If you set
NEmpty% greater than NFull%, your program will not work correctly.
These values matter only when handshaking is used.

PDQComm defaults to a near-empty value of 32 and a near-full value of
BuffSize% - 64. While this is more than adequate for direct and modem
connections, it is not sufficient for delayed connections such as satellite
communications. When the receiver sends an XOFF in this instance, there
is a slight delay before the transmitter receives it. Thus, the receiver buffer
could overflow. For communications where such delays are possible, we

Crescent Softwere, Inc. ■ 3-7

Chapler J: Funcrions & Subrourines PDQComm

recommend a near-empty point of 1/3 and a near-full point of 2/3 of the
buffer size.

AdjustRecBuffer will set the BASIC ERR function to 7, "Out of memory"
if there isn't enough DOS memory for the buffer. It will set ERR to 5,
"Illegal function call" if you provide incorrect parameters.

ASCIIReceive (Function)

■ Purpose

ASCIIReceive receives a text file over an open serial port using no
protocol.

■ Syntax

RetCode = ASCI!Receive%(FileName$)

■ Where

FileName$ is the name of the file you want to receive, and RetCode is
assigned a return code as follows:

ASCI/Receive Return Codes

0 - File sent successfully
1 - DOS file error
2 - Timeout error
3 - Too many errors
4 - Receiver cancelled
5 - Transmitter cancelled

■ Comments

Because ASCIIReceive has been designed as a function, it must be
declared before it may be used.

ASCIIReceive uses XON/XOFF handshaking and closes the file and
returns when a CHR$(26) EOF (end of file) character is received.
Therefore, it is not appropriate for receiving binary data that may contain
embedded CHR$(26) characters. Also note that ASCIIReceive overwrites
filename$ if it already exists.

ASCIIReceive is contained in the ASCIIXFR.BAS file. Please see the
section entitled "Using PDQComm" for more information on file trans­
fers.

■ 3-2 Crescent Software, Inc.

PDQComm Chaprer 3: Functions &: SubroUlines

ASCIISend (Function)

■ Purpose
ASCIISend sends a text file over an open serial port using no protocol.

■ Syntax

RetCode = ASCl!Send%(Fi leName$)

■ Where

FileName$ is the name of the file you want to send, and RetCode is
assigned a return code as follows:

ASCI/Send Return Codes

0 - File sent successfully
1 - DOS file error
2 - Timeout error
3 - Too many errors
4 - Receiver cancelled
5 - Transmitter cancelled

■ Comments

Because ASCIISend has been designed as a function, it must be declared
before it may be used.

ASCIISend uses XON/XOFF handshaking, and sends a CHR$(26) EOF
(end of file) character to signal the end of transmission. Therefore, it is
not appropriate for transmitting binary data that may contain embedded
CHR$(26) characters.

ASCIISend is contained in the ASCIIXFR. BAS file. Please see the section
entitled "Using PDQComm" for more information on file transfers.

BIOSlnkey (Function)

■ Purpose

BIOSinkey is similar to BASIC's native INKEY$ function, except it
returns an integer result.

■ Syntax

KeyHit = BIOS!nkey%

■ Where

KeyHit receives O if no key is pending in the keyboard buffer, a positive
number that represents a normal key's ASCII wde, or a negative value

Cresctmt Software, Inc. ■ 3-3

Chapter 3: Functions&: Subroutines PDQComm

that corresponds to an extended key code. For example, the "A" key has
a value of 65, and the FI key is returned as -59.

■ Comments

Because BIOSinkey has been designed as a function, it must be declared
before it may be used.

In general, integer functions such as BIOS!nkey require less setup and
processing by the BASIC compiler than do string functions. Also, integer
comparisons are much faster and require less code than string com­
parisons.

BIOSPrint (Subroutine)

■ Purpose

BIOSPrint is similar to PDQPrint except it uses the BIOS to print instead
of directly writing to screen memory.

■ Syntax

CALL BIOSPrint (Text$, Row%, Co 1%, Co lr%)

■ Where

Text$ is the text to be printed, Row% and Col% are the row and column
where the text is to be printed, and Colr% is the combined foreground
and background color.

■ Comments

BIOSPrint is used to avoid "bleed-through" problems when a program is
being used with a multi-tasker such as Windows or DesqView. Unless the
program is running on a 80386 or later, direct screen writes from a
background operation will appear on the currently running foreground
program. Using BIOSPrint avoids that problem, because the multi-tasker
can monitor all BIOS calls, and handle the characters correctly. BIOSPrint
is used by the PDQComm terminal emulator modules.

Note that this routine is much slower than PDQ Print. Please see PDQ Print
and OneColor for additional information.

Carrier (Function)

■ Purpose
The Carrier function returns the status of the CD hardware line.

■ 3-4 Crescent Software, Inc.

PDQO»nm Chapter 3: Functions &: Subroulines

■ Syntax

COL ine = Carrier%

■ Where

CDLine is assigned to -1 ;-irue) if the CD line is currently active, or 0
(False) if it is not.

■ Comments

Because Carrier has been designed as a function, it must be declared before
it may be used.

On modems that reflect the actual state of the carrier, Carrier will tell you
if the remote system has disconnected. The following example shows a
typical use for this function.

IF Carrier% THEN
PRINT "Carrier Detected"

ELSE
PRINT "No Carrier Detected"

END IF

Carrier sets the BASIC ERR function to error 52, "Bad file number" if
the communications port is not open.

Checksum (Function)

■ Purpose

Checksum returns the checksum value for a string.

■ Syntax

Check$ = Checksum$ (Work$)

■ Where

Check$ receives the checksum of Work$.

■ Comments

Because Checksum has been designed as a function, it must be declared
before it may be used.

Checksums are used to detect if data has been corrupted. In the context
of a communications package, a checksum can he used to ensure that the
data that was sent is the same as that received. There are many ways to
calculate a checksum, and this routine is among the simplest. (But also
see the CRC16 function elsewhere in this section. which uses a much more

Crescent Software, Inc. ■ 3-5

Chaptu 3: Functions &: SubrouJines PDQCamm

sophisticated method.) Communications programs that use a checksum
simply calculate the value before transmitting, send the data, and then send
the checksum. The receiving program does likewise, and compares the
received checksum with the value it calculates locally. If the two match,
then the data is assumed to have arrived intact.

In this case, the ASCII values of all the characters being sent are added
together, with any excess beyond 256 discarded. A BASIC equivalent of
the PDQComm Checksum algorithm is shown below.

Check = 0
FOR X = I TO LEN(Work$)

Check= Check+ ASC(MID$(Work$, X, 1))
NEXT
Check = Check AND 255

Checksum is designed to return a string rather than an integer value, to
simplify passing it as a parameter to ComPrint.

CloseCom (Subroutine)

■ Purpose
CloseCom closes the COM port and restores the original interrupt vector.
It also deallocates the memory that was used by the receive buffer.

■ Syntax
CALL Cl oseCom

■ Comments

You should call CloseCom before ending your program.

ComEof (Function)

■ Purpose
ComEof indicates if there are any characters waiting to be read from the
receive buffer.

■ Syntax

IF ComEof% THEN
' no characters are waiting to be read.

ENO IF

■ 3- 6 Crescent Software, Inc.

PDQComm Chapter 3: Functions &: Subroulines

■ Comments

Because ComEof has been designed as a function, it must be declared
before it may be used.

ComEof is identical to the regular BASIC EOF() function when using the
COM port. If there are no characters waiting to be read in the receive
buffer, ComEof will return -1 (True). If the receive buffer does contain
characters, then ComEof returns O (False).

ComEof sets the BASIC ERR function to error 52, "Bad file number" if
the communications port is not open.

The example below shows ComEof in a typical context.

IF NOT(ComEof%) THEN
Text$ = Cominput$(Comloc%)
PRINT Text$;

END IF

Comlnput$ (Function)

■ Purpose

Cominput$ reads a specified number of characters from the receive buffer.

■ Syntax

Text$ = Cominput$(NumChars%)

■ Where

Text$ receives the next NumChars % characters that are available to be
read.

■ Comments

Because Cominput$ has been designed as a function, it must be declared
before it may be used.

This function reads characters from the receive buffer. and returns them
as a single string. You tell Cominput$ how many characters you want to
read, and it returns either that number of characters, or the number of
characters that are currently in the buffer. whichever is less. If you call
this function when the buffer is completely empty, it will return a null
string and set ERR to error 62, "Input past end". In general, however.
you will use Comlnput$ in conjunction with the ComLoc function, to
simply read however many characters there are available. This is shown
in the example below.

Crescent Software, Inc. ■ 3-7

Chapter 3: Functions & Subrousines PDQComm

Text$ = Comlnput$(ComLoc%)

Cominput$ sets the BASIC ERR function to error 52, "Bad file number"
if the communications port is not open.

Comlinelnput (Subroutine)

■ Purpose

ComLineinput reads an entire line of text from the receive buffer in a
single operation.

■ Syntax
Timeout%= 5 'use a timeout period of

' 5 seconds
CALL ComL inelnput(Text$, Timeout%)• input the 1 ine of text received

■ Where

Text$ receives the next full line of text from the receive buffer, but only
if it arrives within the next five seconds.

■ Comments

ComLineinput serves the same purpose as BASJC's regular LINE INPUT
statement when using a communication port. It works by examining all
of the characters in the receive buffer (those that have been received but
not yet read by your program), until it finds a carriage return. It then
checks if the next character in the buffer is a line feed, and discards that
if it is. If no carriage return is found, ComLinelnput will wait for one,
up to the number of seconds specified byTimeOut%.

The TimeOut parameter specifies the number of seconds ComLinelnput
will wait for a carriage return before returning to your program. For
example, if the sending program does not issue a carriage return within,
say, 5 seconds, then ComLinelnput simply returns with however many
characters have been received thus far. To disable the time-out feature
entirely, you should set Timeout% to 0. However, your program will
never regain control if the sender fails to transmit a CHR$(13) carriage
return. Please notice that text lines are limited to 256 characters.

ComLineinput$ sets the BASIC ERR function to error 52, "Bad file
number" if the communications port is not open. If ComLineinput does
not find a carriage return within the first 256 characters, it returns the first
256 characters and sets ERR to error 62, "Input past end". If a carriage
return is not received within the specified timeout period, ComLinelnput
sets ERR to error 24, "Device timeout".

■ 3-8 Crescent Sohware, Inc.

PDQComm Chapter 3: Functions &. Subroutines

Comloc (Function)

■ Purpose

ComLoc reports the number of characters currently waiting to be read in
the receive buffer.

■ Syntax

NumChars = Comloc%

■ Comments

Because ComLoc has been designed as a function, it must be declared
before it may be used.

ComLoc serves the same purpose as BASIC's LOCO function when using
communications, and it is generally used in conjunction with the Com­
Input$ function as shown below.

Text$ = Comlnput$(ComLoc%)

This example uses ComLoc % to retrieve all of the characters that are
current! y in the receive buffer.

ComLoc sets the BASIC ERR function to error 52, "Bad file number" if
the communications port is not open.

ComPrint (Subroutine)

■ Purpose

ComPrint replaces the QuickBASIC function PRINT # statement when
printing to the communications port.

■ Syntax
CALL ComPrint(Work$)

■ Where

Work$ is sent through the communications port.

■ Comments

ComPrint sets the BASIC ERR function to error 52. "Bad file number" if
the communications port is not open. If there is a timeout due to
handshaking, ComPrint will set ERR to error 24, "Device timeout".

If a timeout does occur, ComPrint rememhers where in the string it left
off. Thus, you would call it again later using the exact same string to

Crescent Sohware, Inc. - , 0

Chapter 3: Functions &: Subrourines PDQComm

finish transmitting it. Please note that if you are using handshaking and
receive a timeout error, you will need to receive a resume from the remote
system or disable handshaking with the SetHandshaking routine to allow
printing to resume.

CRC16 (Function)

■ Purpose

CRC 16 (Cyclical Redundancy Check, 16 bit method) returns the CRC-16
checksum calculation of a string.

■ Syntax
Check$ = CRC16$(Work$)

■ Where

Check$ receives the CRC-16 calculation of Work$.

■ Comments

Because CRC 16 has been designed as a function. it must he declared before
it may be used.

CRC 16 is similar in concept to the Checksum routine described elsewhere
in this section, except is uses a much more sophisticated technique. Please
see the comments that accompany the Checksum function for a brief
discussion of how checksums are used.

CRC 16 is designed to return a string, to simplify passing it as a parameter
to ComPrint.

CRC16 is shown in context in the XMODEM.BAS file that is used in the
PDQTERM.BAS example program.

DTR (Subroutine)

■ Purpose
The DTR routine toggles the state of the hardware DTR line.

■ Syntax
State% = 0
CALL OTR(State%)

■ 3 - 10 Cresc,mt Software, Inc.

PDQComm Chapter 3: Functions &: SubrouJines

■ Where

If the State% argument to DfR is True (-1). then the DfR line is set to
active (low). If State% is False, then the DfR line is set to inactive (high).

■ Comments

Using the DTR routine to switch the DTR line false is often used to force
a modem to hang up the line.

DTR sets the BASIC ERR function to error 52, "Bad file number" if the
communications port is not open.

FlushBuffer (Subroutine)

■ Purpose

The FlushBuffer routine resets the receive huffer, flushing all of the
characters that it current! y contains.

■ Syntax
IF OverRun% THEN CALL FlushBuffer

■ Where

The receive buffer is purged of all data if a "buffer overrun" condition
has occurred.

■ Comments

You must call this routine if your program receives a "Buffer overrun"
error, as detected by the PDQComm Overrun function. When this happens
the characters in the receive buffer are invalid, so you must flush the buffer
and begin again. Note that you will not need to use FlushBuffer or Overrun
if you are using either of the two handshaking methods provided in
PDQComm.

GetComPorts (Subroutine)

■ Purpose

GetComPorts examines low memory and returns the addresses of all of
the installed communications ports.

■ Syntax
CALL GetComPorts(Portl%. Port2%. Port3%. Port4%)

Crescent Software, Inc.

Chapter 3: Functions & Subrotuines PDQCcmm

■ Where

Port!%, Port2%, Port3%, and Port4% are returned holding the respective
port addresses.

■ Comments

GetComPorts may be used to determine which communications ports are
actually present in a PC. If a Port parameter is returned as non-zero, then
that port does in fact exist.

Notice that some older PC's do not report Com3 or Com4, even when
they are present. In that case, and if you are sure they really do exist, the
correct port addresses are &H3E8 and &H2E8 for Com3 and Com4
respectively.

GetlineStatus (Subroutine)

■ Purpose
GetLineStatus allows you to retrieve the status of all port lines in one
operation.

■ Syntax
CALL GetLineStatus(PortStat)

■ Where

PortStat is a TYPE variable that has been dimensioned using the LStatType
structure defined in COMMDECL.BAS. It is constructed as follows:

TYPE LStatType

END TYPE

CTS AS INTEGER
DSR AS INTEGER
RI AS INTEGER
DCD AS INTEGER

Here, CTS is the Clear To Send line, DSR is the DataSet Ready line, RI
is the Ring Line, and DCD is the Carrier Detect line.

■ Comments
This routine is useful for determining the status of the remote device. For
instance, if you want to open a port to a serial printer but want to make
sure the printer is turned on and on-line, you would use code similar to
this:

DIM PrinterStat AS LStatType

CALL DpenCom(""Com!: 2400, N ,8. 1.X0N"")
Start& = PDQT imer
DO

■ 3- 12

'create the TYPE variable

'open Coml
'start timeout counter

Crescent Software, Inc.

PDQCcmm

CALL GetL i neStatus (Pr i nterStat)
IF POQTimer& - Start& > 90 THEN

PRINT "Printer not on-1 ine"
ENO

ENO IF
LOOP UNTIL PrinterStat.CTS

Chapler J: Functions & SubroudNs

'get the status of the port
'after 5 seconds, give up

'continue until CTS is active

You may have to check PrinterStat.DSR or both PrinterSta.DSR and
PrinterStat.CTS together, depending on the printer. If you merely want
to check the status of the DCD line, you should use the Carrier% function.

GetLineStatus will set the BASIC ERR function to 52, "Bad file number"
if the communications port is not opened.

GetPortConfig (Subroutine)

■ Purpose

GetPortConfig retrieves the parameters for a currently open communica­
tions port, and returns them in a TYPE variable.

■ Syntax
CALL GetPortConf i g (Port%, PortConf i g)

■ Where

Port% is the communications port (I, 2, 3, or 4), and PortConfig is a
special TYPE variable that holds the various configuration information.

■ Comments

GetPortConfig relies on the ModemType TYPE variable, which is defined
in the COMMDECL.BAS include file. ModemType is designed as
follows:

TYPE ModemType
Baud AS LONG
OBits AS INTEGER
Parity AS STRING • I
SBits AS INTEGER

ENO TYPE

Baud is the baud rate of the port, DB its are the number of data bits, Parity
is either "E", "O", or "N" for even, odd, or none respectively, and SBits
is the number of stop bits. This routine is particularly useful when you
need to determine the current parameters for an already-open communica­
tions port.

GetPortConfig sets the BASIC ERR function to error 52, "Bad file
number" if the communications port is not valid. This is a useful way to
see if the port is present, as shown in the example below.

Crt1scent Software, Inc. ■ 3- 13

Chapter 3: Fllnctions &: Subrousines

DIM PortConfig AS ModemType
Port% = 1
CALL GetPortConf i g (Port%, PortConf i g)
IF ERR = 52 THEN PRINT "Port not there"

OneColor (Function)

■ Purpose

PDQComm

OneColor accepts separate foreground and background color values, and
returns them combined in a single hyte for use with the QuickPak
Professional video routines.

■ Syntax

Colr% = OneColor%(FG%, BG%)

■ Where

FG % and BG% are the intended foreground and background colors, and
Colr% receives the combined value.

■ Comments

Because OneColor is implemented as a function, it must be declared before
it may be used.

All of the PDQComm video routines expect a single value to specify both
the foreground and background colors. The colors are in fact stored this
way by the PC's hardware, and providing them in this format allows the
video routines to operate that much faster. Further, this saves variable
memory in your programs by eliminating an extra parameter.

The PC's hardware uses a convoluted method to combine the foreground
and background components of a color. and OneColor will save you that
much additional code and effort.

The formula used by OneColor is:

Colr = (FG AND 16) * B + ((BG AND 7) * 16) + (FG AND 15)

OpenCom (Subroutine)

■ Purpose

OpenCom is used to open a specified COM port, and it is equivalent to
BASIC's OPEN "Com" statement.

■ Syntax
CALL OpenCom("comN: BBBBB, P, 0, S, [rbFFFF] , [HHH] ")

■ 3- 14 Crescent Software, Inc.

PDQComm Chapler 3: Functions & SubmUl/n.es

■ Where

N is the communications port to open; valid port
numbers are I through 4 inclusive.

BBBBB is the baud rate; Valid numbers are 300, 600, 1200,
2400, 4800,9600, 19200, 38400, and 115200.

P is the parity; valid characters are "N", "E", and "O"
for None, Even, and Odd respective) y.

D is the number of data bits; valid numbers are 7 and 8.

S is the number of stop bits; valid numbers are 1 and 2.

FFFF is the receive buffer size; this value may range from
128 to 32767 bytes, however you may omit this
parameter and accept the default buffer size of 128
bytes.

JlllH specifies the handshaking method; valid strings are "XON",
"RTS", and "NON". Using "XON" causes
PDQComm to use XON/XOFF handshaking, "RTS"
means RTS/CTS handshaking is to be used, and
"NON"specifies no handshaking. This parameter is
also optional, and omitting it will default to no
handshaking.

■ Comments

Open Com expects a string containing al I of the parameters as shown above,
except for the last two which are optional. Note that capitalization is
ignored. Also, note that you must include the port number, parity, data
and stop bit parameters, and they must be in the order shown below. (This
is the same requirement as with BASIC's OPEN.) However, the receive
buffer and handshaking parameters are optional, and may be listed in either
order. If omitted, the buffer size defaults to 128 bytes, and the handshak­
ing defaults to "NON".

OpenCom sets the BASIC ERR function to error 52, "Bad file number"
if the communications port is already open. It sets ERR to error 5, "Illegal
function call" if you provide incorrect parameters. If you attempt to open
a non-existent port, ERR will be set to error 54, "Bad file mode".

OpenCom will also set ERR to error 7, "Out of memory" if there isn't
enough DOS memory for the receive buffer.

The following complete example shows OpenCom in action:

Cresc11nt Software, Inc. ■ 3- 15

Chapler 3: Functions &: SubrouJines

Param$ = "COM2:19200,N,8,1,R81024,RTS"
CALL OpenCom(Param$)
IF ERR = 54 THEN

PRINT "COM port not available"
END

END IF

PDQComm

This opens port COM2 at 19.2K baud with no parity, 8 data bits, I stop
bit, a receive buffer of IK, and RTS/CTS handshaking.

OpenComX (Subroutine)

■ Purpose

OpenComX allows you to open ports that have non-standard addresses or
use non-standard IRQ (Interrupt Request) lines. It is also a small-code
way to open a standard port, because it avoids the string parsing overhead
required in OpenCom.

■ Syntax
CALL OpenComX(Address%, IRQ%)

■ Where

Address% is the base address of the port, and IRQ% is the IRQ level.

■ Comments

This routine should be used only if you are familiar with the hardware
installed in your PC. Using incorrect values will probably cause the PC
to lock up. OpenComX currently supports using IRQs I to 7. Please
understand that this does not mean you may use any IRQ value between
I and 7. IRQs are usually assigned as follows:

IRQ O - System Timer
IRQ I - Keyboard
IRQ 2 - Redirected IRQ 9 on IBM AT and AT compatables
IRQ 3 - Communications port 2
IRQ 4 - Communications port I
IRQ 5 - Hard disk on IBM XT
IRQ 6 - Floppy disk
IRQ 7 - Reserved for printer

If you call OpenComX with an IRQ in use hy another device, you most
surely will have to cold-boot the PC.

OpenComX makes some assumptions in order to reduce the code size.
These assumptions are as follows:

, The Baud rate is maintained at the current setting

■ 3- 16 Crescent Software, Inc.

PDQCcmm Chapur 3: Functions &: SubroUliMs

The receive buffer size is set to 512 bytes

• Handshaking is not being used

If you need to change any of these default values, PDQComm offers the
following routines:

• To change the baud rate, use SetCom first.

• To change the buffer size, use AdjustRecBuffer.

To change handshaking, use SetHandshaking.

OpenComX makes these assumptions to minimize the amount of code that
is added to your program. For example, the following program instructs
the modem to take the phone off hook.

DEFJNT A-Z

DECLARE SUB OpenComX(Address, IRQ)
DECLARE SUB ComPrint(Text$)

CALL DpenComX (&H3FB, &HC)
CALL ComPrint("ATHl" + CHR$(13))

· open COM!
'tell modem to access the line

When this program is compiled and linked with P.D.Q., it produces an
.EXE file size of2,592 bytes. By substituting OpenCom for OpenComX,
the program size swells to 4,134 bytes.

OpenComX will set the BASIC ERR function to 52, "Bad file number" if
the communications port is already open. It sets ERR to 5, "Illegal
function call" if you provide it incorrect parameters. It will also set ERR
to 54, "Bad file mode" if there is no communications port at the address
you specified. Finally, OpenComX will set ERR to 7, "Out of memory"
it there is not enough DOS memory for the receive buffer.

OverRun (Function)

■ Purpose

OverRun checks the receive buffer for an "overrun", or overflow condi­
tion.

■ Syntax
IF OverRun% THEN CALL FlushBuffer

Crescent Software, Inc. ■ 3- 17

Chapter 3: Funclions & S1Wn:mtines PDQCmnm

■ Where

The receive buffer is purged of all data if a "buffer overrun" condition
has occurred.

■ Comments

Because OverRun has been designed as a function, it must be declared
before it may be used.

OverRun returns -1 (True) if an overrun has occurred, or O (False) if it
has not. An overrun condition simply means that data has continued to
arrive at the communications port when the receive buffer was already
full, and your program did not remove the characters quickly enough.

Note that you must call FlushBuffer if you receive an overrun error. You
will lose all of the data in the buffer if it becomes overrun anyway, because
there is no assurance that the characters present are valid. However, the
buffer will never overrun if you are using either of the handshaking
methods we provide in PDQComm. OverRun sets the BASIC ERR
function to error 52, "Bad file number" if the communications port is not
open.

ParseComParam (Subroutine)

■ Purpose

ParseComParam accepts a string in the format used with OpenCom, and
unpacks it into a ModemType structure variable.

■ Syntax
CALL ParseComParam(Parm$, Port%, PortConf i g, Buff erLength%, HandShake$)

■ Where

Parm$ is a setup string such as

""COM!: 2400, N. B, I, RB1024, NON"

and the remaining parameters are returned set to the equivalent values.
PortConfig is a special ModemType TYPE variable that is defined in the
COMMDECL.BAS include file. (Also see the GetPortConfig routine for
a description of the ModemType variable.)

■ Comments

ParseComParam is useful if you want to change the parameters using the
SetCom routine while a port is open. You would call ParseComParam
with the same string that was used with OpenCom, and then change what
is necessary. You would then call SetCom to alter just those portions in

■ 3- 18 Crescent Software, Inc.

l'DQCcmm C11np1er 3: F11nctions &: SubrouJims

the TYPE variable you want changed. The example below shows this in
context.

DEFINT A-Z

DIM PortConfig as ModemType
Parm$= "Com!:2400,N,8,1,RBI024,N0N"
CALL 0penCom(Parm$)
CALL ParseComParam(Parm$, Port, PortConf ig. Buf len, Hand$)
PortConfig.Baud = 1200
CALL SetCom(PortConf ig)

PortConfig now contains the correct parameters from the original Parm$.
That is, Port contains the port number, ButLen holds the length of the
receive buffer, and Hand$ reflects the handshaking method currently in
use ("RTS", "XON", or "NON").

Notice that the only parameters you may change using SetCom are the
baud rate, parity, and data and stop bits. These are the values returned in
the PortConfig TYPE variable. To change the handshaking method you
must use the SetHandshaking routine. In this example, only the baud rate
is being changed, from 2400 to 1200.

Pause (Subroutine)

■ Purpose

Pause will delay a program for a specified numher of 18ths of a second.

■ Syntax

CALL Pause(Ticks%)

licks% is the number of system timer ticks (18th if a second) to delay.

■ Comments

P.D.Q. does not support QuickBASIC's TIMER function, because that
function requires floating point operations. Pause therefore provides a
simple way to delay your program, while providing a finer resolution than
BASIC's SLEEP command.

POQExist (Function)

■ Purpose

PDQExist provides a simple way to determine if a file exists.

■ Syntax

There = PDQExist%(Fi 1eName$)

Crt1sct1nt Softwart1, Inc. ■ 3 - 19

Chap/er 3: Functions & SubroUlines PDQComm

■ Where

FileName$ is either a file name, or a file specification such as "*.BAS'',
and There receives -1 if the file exists, or zero if it does not.

■ Comments

Because PDQExist has been designed as a function, it must be declared
before it may be used.

A drive and path specification may be optionally used to specify other than
the current defaults.

PDQParse (Function)

■ Purpose

PDQParse lets you extract individual portions from a delimited string.

■ Syntax
Thisltem$ = PDQParse$(Work$)

■ Where

Thisltem$ receives the next delimited portion of Work$.

■ Comments

Because PDQParse has been designed as a function, it must be declared
before it may be used.

PDQParse serves two important purposes. First, it can be used to parse
delimited information in a string such as the current DOS PATH. It also
provides an easy way to simulate READ and DATA, to reduce the amount
of code that is added to your programs.

There are actually three related routines in this group. The first is
PDQParse, which is designed as a string function with a single string
argument. Each time PDQParse is invoked, it returns the next successive
item in the string. PDQRestore may then be used to reset the routine to
start at the beginning again-either with the same string or with a new
one. The last routine is SetDelimitChar, and it lets you establish any
arbitrary character as a delimiter. The short program below shows this in
action.

Work$ = "One; Two; Three"
FOR X = I TO 3
PRINT PDQParse$(Work$);

NEXT

Result on the screen: OneTwoThree

■ 3-20 Crescent Software, Inc.

PDQCamm Chapter 3: F11nctions &: Subroutines

By default, PDQParse uses a semicolon (;) as a delimiter, since parsing
the DOS PATH is a fairly common operation. But you may also change
the delimiter to, say, a comma, which is what BASIC uses when reading
DATA items. If your data has a comma in it, then you could change the
delimiter to some other character, for example a "I" or even a Ctrl-A.
The delimiter can also be changed mid-read if necessary. Like
QuickBASIC's READ statement, PDQParse strips leading blanks and Tab
characters from each item.

PDQPrint (Subroutine)

■ Purpose

PDQPrint is a "quick print" routine that bypasses DOS and writes directly
to screen memory.

■ Syntax

CALL PDQPrint(Work$, Row%, Column%, Colr%)

■ Where

Work$ is the string to be printed, Row% and Column% specify where on
the screen to print, and Colr% is the combined foreground and background
color to use.

■ Comments

PDQPrint assumes an 80 column display using text page zero. PDQPrint
fully supports the 25, 43, and 50 line modes available with EGA and VGA
adapters.

Because PDQPrint accepts row and column parameters, your program
should use BASIC's built-in CSRLIN and POS(0) functions if you intend
to print at the current cursor location. Th is is shown helow.

CALL PDQPrint(Work$, CSRL!N, PDS(O), Colr%)

The foreground and background colors must he combined into a single
value using the following formula:

Colr = (FG AND 16) • B + ((BG AND 7) • 16) + (FG AND 15)

The simplified formula below does not accommodate flashing:

Colr = FG + 16 • BG

The first time PDQPrint is called, it examines the type of display adapter
installed using a BIOS service, and saves that information internally.
Thus, subsequent calls to PDQPrint will he extremely fast. This also

Crescent Software, Inc. ■ 3-21

Chapter 3: Functions & S1dJroulines PDQComm

makes PDQPrint ideal for use within a TSR program. As long as it is
called once before the program becomes resident, it may be used at any
time without regard to whether the BIOS is in an "interruptable" state.

Also see BIOSPrint which prints using the BIOS, and OneColor which
combines the foreground and background colors into one byte automat­
ically for you.

PDQRestore (Subroutine)

■ Purpose

PDQRestore is intended to be used with PDQParse, to force that routine
to begin reading from the beginning of the string.

■ Syntax
CALL POQRestore

■ Where

The internal pointer PDQ Parse uses is reset to the beginning of the string.

■ Comments

See the PDQParse routine elsewhere in this section.

PDQTimer (Function)

■ Purpose

PDQTimer returns the number of timer ticks stored in the BIOS data area
in low memory.

■ Syntax

NumTicks& = POQTimer&

■ Where

NumTicks& receives the contents of the four-byte system timer.

■ Comments

Because PDQTimer has been designed as a function, it must be declared
before it may be used.

PDQTimer is provided as a way to measure elapsed time. Please note that
when the clock passes midnight, the timer is reset to zero:

Start& = POQTimer&
FOR X = 1 to 10000

■ 3-22

'start the timer
'we want to time how long this
' takes

Crescent Software, Inc.

PDQCmnm l11apter J: Functions &: S"brouliMs

NEXT
Done& = PDQTimer 'done timing
IF Done& < Start& THEN

PRINT "The clock passed midnight so I'm totally lost
ELSE

PRINT Done& - Start&; "clock ticks have elapsed"
END IF

PDQVall and PDQValL (Functions)

■ Purpose

PDQVall returns an integer that represents the value of a string, and
PDQValL returns a long integer.

■ Syntax
Value = PDQVa l!%(Work$)

or

Value= PDQValL&(Work$)

■ Where

Work$ is a string containing a number such as "1234", and Value receives
its value.

■ Comments

Because PDQVall and PDQValL have been designed as functions, they
must be declared before they may be used.

These function are useful because the BC. EXE compiler generates floating
point interrupts whenever VAL() is used, and these integer and long integer
functions do not. Because floating point operations are not required,
PDQVall and PDQValL are also extremely fast.

RfS (Subroutine)

■ Purpose

RTS sets the state of the RTS line.

■ Syntax

CALL RTS (State%)

■ Where

State% is either Oto clear the line, or anything else to set it.

Crescent Software, Inc. ■ 3-23

Chapter 3: Functions &: SubroUlines PDQComm

■ Comments

The RTS subroutine lets you manually control the state of the RTS (Request
To Send) line on a serial port. Although PDQComm features automatic
control of this line as part of its support for hardware handshaking, there
may be situations where you need to control the line manually. For
example, if you are receiving data and want to Shell to DOS, you can tell
the sender to halt prior to using the BASIC SHELL command. Then,
once the person using your program types EXIT and you regain control,
you can reenable the RTS line status telling the sender that it's okay to
resume.

To halt the flow of data as described here, call RTS with an argument of
0. Then to resume sending again, use -I (or any other value).

ScanCodes% (Function)

■ Purpose

ScanCodes is used by the terminal emulators. It is similar to INSTR except
it returns the position of the first control character it finds in the string.
(Control characters are those with an ASCII values less than 32.)

■ Syntax
Found = ScanCodes%(Start%, Text$)

■ Where

Start% is the position in Text$ to begin looking. This must have a value
between I and LEN(Text$). Text$ is the text to search.

■ Comments

Since ScanCodes is a function, it must be declared before you may use it.

ScanCodes is declared in COMMDECL.BAS so if you include that file,
you do not need to declare it yourself. This routine is used by the emulation
routines to search for escape sequences and control codes, and it is
documented here in the interest of completeness.

SendBreak (Subroutine)

■ Purpose

This routine transmits a break signal. A break signal is a logic O that is
asserted for a time period longer than one character.

■ Syntax
CALL SendBreak (Ticks%)

■ 3-24 Crescent Software, Inc.

PDQComm Chapter 3: Fi,nctions &. Subroulines

• Where

Ticks% is the number of timer ticks (I/18th second) that the break signal
will be sent for.

■ Comments

Some mainframe and minicomputer systems require that a break be sent
to cancel a session. Consult that system's manual for the recommended
break duration.

SendBreak will set the BASIC ERR function to 52, "Bad file number" if
the communications port is not opened.

SetActivePort (Subroutine)

■ Purpose

This routine changes the active port, to allow access to any two ports at
one time. The active port is the one that commands such as OpenCom
and ComPrint work with.

■ Syntax
CALL SetAct i vePort (PortNum%)

■ Where

PortNum % is either 1 or 2, to specify either the first port that was opened
or the second. The 1 or 2 have no relation to the actual port number.

■ Comments

Using this routine allows you to open two ports at once. Older versions
of PDQComm allowed only one port to be open at one time, and therefore
did not require a port number argument. For example, BASIC's com­
munications routines need a file number to specify the port, which adds
extra code each time they are used. PDQComm avoids that problem and
also maintains compatibility with the original version by letting you
manually switch the port that is to be addressed.

Due to the hardware design of the ISA (Industry Standard Architecture)
bus, you cannot open two ports that use the same IRQ. This means you
cannot open ports 1 and 3 at the same time. ur ports 2 and 4 together.

PDQComm will not allow you to open two ports on the same IRQ, but it
won't stop you from opening a port that shares an IRQ opened by another
program.

For instance, if you have a serial mouse connected to COM2, PDQComm
will allow you to open COM4. But in that case neither the mouse nor the
port will operate properly.

Crescent Software, Inc. ■ 3-25

Chapter 3: Functions & S,UJroUDnt!s PDQOmim

The MCA and EISA buses do allow different boards to share the same
IRQ, but PDQComm does not support IRQ sharing at this time. Also,
you can buy special boards that have a number of ports and allow you to
share IRQs, but PDQComm does not currently support this either.

The following code fragment opens both COM3 and COM2, and simply
redirects everything that comes into COM3 out through COM2.

DEFINT A-Z

'$INCLUDE: 'COMMDECL. BAS'

CALL OpenCom("Com3: 19200, N, B, 1, RB204B, XON") 'open first port
CALL SetActivePort (2) 'set second port active
CALL OpenCom("Com2: 2400, N, 8, I, XON"") 'open second port
CALL SetActivePort(l) 'make first port active again

DO

LOOP

IF ComLoc THEN
Com0neln$ = Come!nput$(ComLoc)
CALL SetAct ivePort (2)
CALL ComPrint(Come0neln$)
CALL SetAct i vePort (I)

END IF
IF LEN(INKEY$) THEN EXIT DO

CALL C loseCom
CALL SetAct i vePort (2)
CALL CloseCom
END

'see if we have characters
'we do so get them
'make the second port active
'output the characters
'make port 1 active again

'continue until a keypress

'close the first port
'make port 2 active
'close second port

SetActivePort will set the BASIC ERR function to 5, "Illegal function call"
if you specify a port that has not been opened.

SetCom (Subroutine)

■ Purpose

SetCom lets you modify the parameters for an already open communica­
tions port.

■ Syntax
CALL SetCom(PortConfig)

■ Where

PortConfig is a special ModemType TYPE variable that contains the new
port values to use.

■ Comments

■

SetCom is useful in many situations, but particularly if you connect to a
remote system at a different baud than you had initially set. SetCom thus

3-26 Crescent Software, Inc.

PDQComm Chapter 3: F"ncrions & SuhroUlines

lets you change the current parameters to match those of the remote
system.

SetCom sets the BASIC ERR function to error 52, "Bad file number" if
the communications port is not already open. It sets ERR to error 5,
"III0egal function call" if you provide incorrect parameters.

The following example shows a typical usage for the SetCom routine.

DIM PortConfig as ModemType
PortConfig.Baud = 38400
PortConfig.Parity = "E"
PortConfig.DBits = 7
PortConfig.SBits = I
CALL SetCom(PortConfig)

SetComPrintTO (Subroutine)

■ Purpose

SetComPrintTO sets the time-out length for ComPrint.

■ Syntax

CALL SetComPr i ntTD (Seconds%)

■ Where

Seconds% is the new approximate time-out value in seconds, or zero to
disable the time-out feature.

■ Comments

If you are using handshaking and call ComPrint to transmit data, some
method is needed to let your program regain control if the receiver asks
you to stop sending but never allows you to resume. By default, ComPrint
uses a time-out period of five seconds. SetComPrintTO allows you to
change that period, or disable the time-out altogether using a value of zero.
Be aware that disabling the time-out feature can cause your program to
hang if the receiver never allows you to resume transmitting.

ComPrint uses the BIOS system timer count stored in low memory to keep
track of how much time has elapsed. Although the BIOS used 18.2 timer
ticks for each second, ComPrint uses 16 per second to simplify the math
and add less code.

Therefore, the exact time-out period will be xx slightly shorter than what
you specify.

Crescent Software, Inc. ■ 3-27

Chap1er 3: Funclions &: Subroudnes PDQComm

SetDelimitChar (Subroutine)

■ Purpose

SetDelimitChar lets you change the default delimiter recognized by the
PDQParse function.

■ Syntax
CALL Set De 1 imitChar(NewChar%)

■ Where

NewChar% is the ASCII value of the new delimiting character.

■ Comments

See the PDQParse routine elsewhere in this section.

SetFIFO (Subroutine)

■ Purpose

SetFIFO is used to enable or disable the NS16550A FIFO mode.

■ Syntax
CALL SetFIFO(TriggerLeve 1%)

■ Where

TriggerLevel % is the point in the FIFO where an interrupt will occur.

■ Comments

This command allows you to take advantage of the advanced NS16550A
UART.

This UART contains a 16-character transmit and receive FIFO (First In,
First Out) buffer. This buffer allows the CPU to service the port less
frequently, allowing higher speeds and also the ability to run under
multi-taskers such as Windows and DesqView without losing characters.

For more information on this UART, please see the tutorial section in this
manual.

TriggerLevel % specifies the number of characters contained in the receive
FIFO buffer before an interrupt is generated. Valid levels are I, 4, 8, and
14. If you use a value other than these, SetFIFO will select the next lower
legal value. A TriggerLevel % of O disables the FIFO operation.

■ 3-28 Crescent Software, Inc.

PDQC,,,,rm Chapter 3: Functions & SuhroUlines

SetHandshaking (Subroutine)

■ Purpose

SetHandshaking is used to change the handshaking method that will be
used by an already-open communications port.

■ Syntax
CALL SetHandshaking("NON")

■ Where

Any handshaking that had been in effect is disabled. (Of course, if "XON"
were used in this example, then that handshaking method would be
activated instead.)

■ Comments

SetHandshaking accepts a string argument in the form of "RTS", "XON",
or "NON", and uses that to establish the current handshaking method.

SetHandshaking sets the BASIC ERR function to error 52, "Bad file
number" if the communications port is not open.

SetMCRExit (Subroutine)

■ Purpose

SetMCRExit allows you to set the state of the DTR and RTS lines when
you close the communications port.

■ Syntax
CALL SetMCRExit(DTRState%, RTSState%)

■ Where

DTRState% and RTSState% are either O or -I to disable or maintain the
line states respective! y.

■ Comments

PDQComm is well behaved in that it leaves the DTR and RTS lines in the
state they were when the port was opened. unless you have changed them
using SetMCRExit. However, this routine is useful when transferring
control to another program, so your modem does not hang up because the
DTR line drops. The brief example below shows SetMCRExit in context.

DTRState% = -1
RTSState% = 0
CALL SetMCRExit(DTRState%, RTSState%)
CALL CloseCom

Crescent Software, Inc. ■ 3-29

Chap1er 3: Functions & S11broulines PDQCcmm

Here, the IJTR line is maintained active when the communications port is
closed, thereby preventing the modem from hanging up. However, the
RTS line is set to inactive.

SetMCRExit sets the BASIC ERR function to error 52, "Bad file number"
if the communications port is not open.

SetxxxxWindow (Subroutines)

■ Purpose

These routines select which window is to be addressed by subsequent calls
to the initializing and printing routines.

■ Syntax

CALL SetxxxxWindow(WinNum%)

■ Where

Window number WinNum% is established as being the currently active
window.

■ Comments

There are currently five sets of emulation routines provided with
PDQComm. Therefore, the actual name of the window selection routine
you call will be either SetANSJWindow, SetTTYWindow, SetD215Win­
dow, SetVT52Window, or SetVTI00Window.

The code that actually implements the various window setting commands
has been commented-out in the source code files, to reduce the size of
your programs. Since most applications do not need multiple windows
active at one time, the code to implement this feature is usually unneces­
sary.

Please see the comments in the appropriate x.uxDJSP.BAS file for
instructions on activating these routines. Also see the section entitled
"Using PDQComm" for more information on using windowed terminal
emulations.

XModemReceive (Function)

■ Purpose

XModemReceive receives a file over an open serial port using either an
X-Modem CRC or X-Modem Checksum protocol.

■ 3-30 Crescent Software, Inc.

PDQComm Chapter 3: Functions &: Subroutines

■ Syntax

RetCode = XModemReceive%(Fi 1eName$)

■ Where

FileName$ is the name of the file you want to receive, and RetCode is
assigned a return code as follows:

XModemReceive Return Codes

0 - file sent successfully
1 - DOS file error
2 • Timeout error
3 - Too many errors
4 - Receiver cancelled
5 - Transmitter cancelled

■ Comments

Because XModemReceive has been designed as a function, it must be
declared before it may be used.

XModemReceive will use the CRC method by default unless the sender
doesn't support it, in which case it will switch automatically to use
Checksum.

XModemReceive is contained in the XMODEM.BAS file. Please see the
section entitled "Using PDQComm" for more information on file trans­
fers.

XModemSend (Function)

■ Purpose

XModemSend sends a file over an open serial port using either an
X-Modem CRC or X-Modem Checksum protocol.

■ Syntax

RetCode = XModemSend%(Fi leName$)

■ Where

FileName$ is the name of the file you want to send, and RetCode is
assigned a return code as follows:

XModemSend Return Codes

0 - file sent successfully
1 - DOS file error
2 - Timeout error
3 - Too many errors

Crescent Software, Inc. ■ 3 -31

Chap1er J: Funclions &: SubroUlines PDQComm

4 - Receiver cancelled
5 - Transmitter cancelled

■ Comments

Because XModemSend has been designed as a function, it must be
declared before it may be used.

XModemSend will use the CRC method by default unless the receiver
doesn't support it, in which case it will switch automatically to use
Checksum.

XModemSend is contained in the XMODEM.BAS file. Please see the
section entitled "Using PDQComm" for more information on file trans­
fers.

UARTType% (Function)

■ Purpose

Returns the type of UART at a specified address.

■ Syntax
PortlUART = UARTType%(Address%)

■ Where

Address% is the base address of the port. For example, Address% would
be &H3F8 for COM I.

■ Comments

Because UARTType% is designed as a function, it must be declared before
you may use it.

UARTType% is declared in COMMDECL.BAS so if you include that file,
you do not need to declare it yourself. This routine returns the following
values:

-1 - Unknown
0 - 8250 / 8250B
1 - 8250A I 16450
2 - 16550
3 - 16550A

For more information on these UARTs, please see the tutorial section in
this manual. SetFIFO calls this routine to see if you have a 16550A, so
you do not need to call it before setting a 16550A in FIFO mode.

■ 3-32 Crescent Software, Inc.

PDQComm C11apler 3: FHncrions &: SubrouliMs

XOff (Function)

■ Purpose

The XOfffunction returns-I (True) if the remote system has sent an XOFF
and XON/XOFF handshaking is currently enabled.

■ Syntax
IF NOT XOff% THEN CALL ComPrint("Testing'")

■ Where

The message is sent using ComPrint, as long as the remote terminal has
not sent an XOFF signal.

■ Comments

Because XOff has been designed as a function. it must he declared before
it may be used.

XOff sets the BASIC ERR function to error 52, "Bad file number" if the
communications port is not open.

The XOfffunction allows you to manually check to see if the remote system
is ready to receive characters when XON/XOFF handshaking is being
used. If you had an earlier version of PDQComm, you do not need to call
this routine before calling ComPrint anymore, because this is now handled
automatically.

xxxx I nit (Subroutines)

■ Purpose

A call to the appropriate xuxlnit routine is required prior to accessing an
emulation window.

■ Syntax

CALL xxxxlnit

■ Where

All of the parameters that control the specified emulation window are
initialized to their default values.

■ Comments

There are currently five sets of emulation routines provided with
PDQComm. Therefore, the actual name of the initializing routine you call
will be either ANSIInit, TIY!nit, D215Init. VT521nit, or VTI00!nit.

Crescent Software, Inc. ■ 3-33

Chapter 3: Functions&: Suhroulines PDQComm

You must call the appropriate window initializing routine before using any
of the supplied emulations. This ensures that the necessary parameters
within the window handling code will have been set to the default initial
values. Once the window has been properly initialized, you may then
further customize the window as necessary.

These routines are contained in the file xxxxDISP. BAS, where= is the
name of the emulation being used. Please see the section entitled "Using
PDQComm" for more information on using windowed terminal emula­
tions.

xxxx Print (Subroutines)

■ Purpose

The various terminal printing routines are used to display text within a
previously defined emulation window.

■ Syntax

CALL xxxxPrint(Text$)

■ Where

Text$ will be displayed within the currently defined emulation window,
and any embedded control codes recognized by the selected emulation to
set colors, position the cursor, and so forth will be acted upon.

■ Comments

There are currently five sets of emulation routines provided with
PDQComm. Therefore, the actual name of the windowed text printing
routine you call will be either ANSIPrint, TTYPrint, D215Print,
VT52Print, or VTI00Print.

These routines are contained in the file xxxxDISP. BAS, where= is the
name of the emulation being used. Please see the section entitled "Using
PDQComm" for more information on using windowed terminal emula­
tions.

■ 3-34 Crescent Software, Inc.

Chapter 4: Communications Tutorial

PDQCcmm Chap1er 4: Communican'ons TuJiJrlal

An Introduction To Serial Communications

All IBM PC and compatible computers come with two types of 1/0
(input/output) ports to allow them to communicate with external devices.
These are the serial port and the parallel port. Although these two types
of ports are used for similar purposes, they work in different ways.

A parallel port is called a byte device, because it sends and receives data
eight bits at a time all at once over separate wires. This allows data to be
transferred very quickly; however, the cable required can be expensive
because of the number of individual wires it must contain. A serial port
is a called a bit device, because it sends and receives data one bit at a time
over one wire. While it takes eight times as long to transfer each byte of
information this way, only a few wires are required. In fact, two-way (full
duplex) communications is possible with only three separate wires-one
to send, one to receive, and a common, or ground wire.

Synchronous And Asynchronous
Communications

There are two basic types of serial communications, synchronous and
asynchronous. With synchronous communications, the two devices ini­
tially synchronize themselves to each other, and then continually send
characters to stay in sync. Even when data is not really being sent, the
constant flow of bits allows each device to know where the other is at any
given time. That is, each character that is sent is either actual data or an
idle character. Synchronous communications allows faster data transfer
rates than asynchronous methods, because additional characters to indicate
where each group of bits that comprise one byte begins and ends is not
required. Unfortunately, the serial ports on IBM-style personal computers
are not synchronous devices, and PDQComm does not support
synchronous communications.

Asynchronous communications is the method used on IBM PC and
compatible computers. Asynchronous means "no synchronization", and
it does not require sending and receiving idle characters. However, the
beginning and end of each block of data must be identified by stan and
stop bits that indicate when the data transmission is about to begin and
when it ends. The requirement to send these additional two bits cause
asynchronous communications to be slower than synchronous.

An asynchronous line that is idle is identified with a value of I, and this
is also called a mark state. By using this value to indicate that no data is
currently being sent, the devices are able to distinguish between an idle
state and a disconnected line. When a character is about to be transmitted,

Crescent Software, Inc. ■ 4 - 1

Chapter 4: Communications Tutorial PDQComm

a start bit is sent. A start bit has a value of 0, which is also called a space
state. Thus, when the line switches from a value of I to a value of 0, the
receiver is alerted that a data character is about to come down the line.

Communicating By Bits
Once the start bit has been sent, the transmitter sends the actual data bits.
There may either be 5, 6, 7, or 8 data bits, depending on the configuration
you have selected. Both the receiver and the transmitter must agree on
the number of data bits to be used, as well as the timing of the start and
stop bits.

Notice that when only 7 data bits are employed, you cannot send ASCII
values greater than 127. Likewise, using 5 bits limits the highest possible
value to 31. After the data has been transmitted, a stop bit is sent. A stop
bit has a value of I-or a mark state-and it can be detected correctly even
if the previous data also had a value of I. This is accomplished by the
stop bit's duration. Stop bits can be I, 1.5, or 2 bit periods in length.

The Parity Bit
Besides the synchronization provided by the use of start and stop bits, an
additional bit called a parity bit may optionally be transmitted along with
the data. A parity bit affords a small amount of error checking, to help
detect data corruption that occurs during transmission. You can choose
either even or odd parity, or none at all. When parity is being used, the
number of marks (logical I bits) are counted, and a single bit is transmitted
following the data bits to indicate whether the number of I bits just sent
is even or odd.

For example, when even parity is chosen, the parity bit is transmitted with
a value of O if the number of preceding marks is an even number. For the
binary value of 0110 0011 the parity bit would be 0. If even parity were
in effect and the binary number 1101 0 I 10 were sent, then the parity bit
would be 1. Odd parity is just the opposite, and the parity bit is O when
the number of mark bits in the preceding word is an odd number.

Please understand that parity error checking is very rudimentary. While
it will tell you if there is a single bit error in the character, it doesn't show
in which bit the error occurred. Worse. if two bits are in error-for
example, if two 1 bits are received incorrectly as 0-then the parity would
not reflect any error at all. Figure 4-1 shows the letter A (ASCII value
65) as it appears when being transmitted with 7 data bits, 1 stop bit and
even parity.

■ 4-2 Crescent Software, Inc.

PDQComm Chapter 4: Communicarions Tworial

logical 1

logical 0
Start Bit O Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Parity Stop
~ ~·~

Figure 4-1. Letter ·A• (ASCII 65/ transmitted with 7 data bits, 1 stop bit, and
even parity.

Bidirectional Communications
Now lets continue to some other important terms. The first is simplex
communications, and when this method is used data can travel in one
direction only. This is the simplest type of communications, in which one
PC or terminal has only a receiver and the other has only a transmitter.
A parallel printer port, for the most part, is a simplex connection because
data flows only to the printer. Half-duplex is used to describe a system
whereby both devices can send and receive, but not at the same time.
Some of the modem protocols that will be discussed later in this section
are half-duplex.

Finally, full-duplex means that both devices can send and receive data at
the same time. The serial port on your computer is a full-duplex device,
and it uses separate lines for transmitting and receiving data. Other
modem protocols that will be discussed later support full-duplex com­
munications over one line.

Baud Versus Bits Per Second
One of the most misused terms in serial communications is baud, which
many people erroneously believe corresponds to bits per second (BPS).

The baud unit is named after Jean Maurice Emile Baudot, who was an
officer in the French Telegraph Service. He is credited with devising the
first uniform-length 5-bit code for characters of the alphabet in the late
19th century. What baud really refers to is modulation rate. This is the

Crescent Software, Inc. ■ 4-3

Chapter 4: Communications TUlorial PDQComm

number of times per second that a line changes state. Isn't this the same
as BPS? Well, not exactly. If you connect two serial ports together using
direct cables, baud and BPS are in fact the same. That is, if you are
running at 38400 BPS, then the line is also changing states 38400 times
per second. But when considering modems, this isn't the case.

Because modems need to transfer signals using a telephone line, the
maximum baud rate is severely limited. Depending on the type of
modulation being employed, modems are limited to either 1200 or 2400
baud. This is a physical restriction of the lines provided by the phone
company. You may think you have a 2400 baud modem, but if you do,
then your modem that can actually transfer data at 9600 BPS or greater.
In fact, 2400 BPS modems are actually 600 baud devices, and the increased
data throughput available with 9600 BPS modems is accomplished by the
use of sophisticated phase modulation techniques.

RS-232C
The RS in RS-232C stands for Recommend Standard, 232 is the identifica­
tion number for this standard, and C is the latest version of the standard.
The serial port on most computers is a subset of the RS-232C standard.
The full RS-232C standard specifies a 25-pin "D" connectorofwhich only
22 pins are used. Most of these pins are not needed for PC communica­
tions, and indeed, many newer computers are equipped with connectors
having only 9 pins.

DCE And DTE Devices
Two terms you should be familiar with are DTE and DCE. DTE stands
for Data Terminal Equipment, and DCE stands for Data Communications
Equipment. RS-232 lines are not bidirectional, and these terms indicate
in which direction data is flowing. Your computer is usually a DTE device,
while modems are usually a DCE device. Most devices let you choose
how they are to be configured.

The RS-232 standard states that DTE devices use a 25-pin male connector,
and DCE devices use a 25-pin female connector. You can therefore
connect a DTE device to a DCE using a straight pin-for-pin connection.
However, to connect two like devices, you must instead use a null modem
cable. Null modem cables reverse the sense of the transmit and receive
lines, and are discussed later in this chapter. Figures 4-2 and 4-3 below
illustrate the connections and signal directions for both 9- and 25-pin
connectors. Note that in the following paragraphs, DTE is used to mean
your computer.

■ 4 -4 Crescent Software, Inc.

PDQ°"'1m C'hapter 4: Communicadons Tworlal

~ DCD (to DTE)
(to DTE)DSR ®® RD (to DTE)

(from DTE) RTS ®@ TD (from DTE)
(to DTE) CTS -®@

(to DTE) RI
DTR (from DTE)

® @ GND (Signal Ground)

~

I Figure 4-2. 9 Pin RS-232 Connector

Now Jets take a closer look at the individual wires within a serial cable.
The TD (transmit data) wire is the one through which data from a DTE
device is transmitted. This name can be deceiving, because this same wire
is used by a DCE device to receive its data. The TD line is kept in a mark
condition by the DTE device when it is idle. The RD (receive data) wire
is the one on which data is received by a DTE device, and the DCE device
keeps this line in a mark condition when idle.

RTS stands for Request To Send. The DTE device puts this line in a space
condition to ten the remote device that it is ready to send data. The
complementoftheRTS wire is CTS, which stands for Clear To Send. The
DCE device puts this line into a space condition to ten the DTE device
that it is ready to receive the data. Together, these two lines make up what
is caned CTS/RTS handshaking. PDQComm supports this handshaking,
as wen as software handshaking using special control characters.

DTR stands for Data Terminal Ready. Its function is very similar to the
RTS line, and it controls the output from a DTE device. DSR (Data Set
Ready) is the companion to DTR in the same way that CTS is to RTS.
DSR/DTR handshaking works in the same way as CTS/RTS, but
PDQComm does not currently support that because most modems use

Crescent Software, Inc. ■ 4-5

Chapter 4: Communicarion.s TuJcrial PDQComm

/
@ G)
@ @ TD (from DTE)

® @ RD (to DTE)

@ (3) RTS (from DTE)

@® CTS (to DTE)

@~
DSR (to DTE)

(from DTE) DTR ® 7 GND (Signal Ground)

@(]) DCD (to DTE)

(to DTE) RI @®
@®
@@
@®

@

~
I Figure 4-3. 25 Pin RS-232 Connector

DTR to disconnect a call. When the computer drops the IJTR line to False,
it causes the modem to hang up. This helps to explain QuickBASIC's
infamous IJTR bug-when QuickBASIC closes a communications port, it
always drops the IJTR line. PDQComm leaves DTR the way it was when
the port was opened, and also allows you to set the state of the line when
the port is closed. Note that DTR and DSR are simply an alternate method
of hardware handshaking, and it would be pointless to use both CTS/RTS
and DTR/DSR at the same time.

CD stands for Carrier Detect. Carrier Detect is used by a modem to signal
that it has a connection with another modem, or has detected a carrier.
The CD line is useful in determining when the remote device hangs up.
A carrier will be explained later in the section on modems.

The final line that we will discuss is RI. RI stands for Ring Indicator, and
the modem toggles the state of this line when an incoming call rings your
phone. Understand that not all serial ports and modems, or even cables,
support the RI line. A much better way to determine when the phone is
ringing is to read the string that the modem returns, as shown in the section
"Writing a BBS program with PDQComm".

■ 4- 6 Crescent Software, Inc.

PDQComm Chapler 4: Communications TUlorial

Finally, the RS-232C standard imposes a cable length limit of 50 feet. You
can probably ignore this "standardn in most cases, since a cable can be
as long as 300 feet at baud rates up to 19200 using modern serial boards.
Of course, you must use high quality, well shielded cable when running
very long RS-232 lines.

Cables, Null Modems, And Gender Changers
In a perfect world, all serial ports on every computer would be DTE devices
with 25-pin male "Dn connectors. All modems, printers, and anything
else you want to connect to would be DCE devices with 25-pin female
connectors.

This would allow you to use a cable in which each pin on one end of the
cable is connected to the same pin on the other end. Unfortunately, we
don't live in a perfect world. Serial ports use both 9 and 25 pins, most
devices can be configured as either DTE or DCE, and-as in the case of
serial printers-very well may be configured as a DCE or DTE device.
Because of this lack of standardization. special cables called null modem
cables and gender changers are often required.

~
-~ ~-~----~ ~

Modem Mode~ ~
Computer A (OCE Device) (OCE Device) Computer e

(DTE Device) (DTE Device)

I Figure 4-4. Two Computers Connected Via Modems.

Let's look first at null modem cables. Figure 4-4 shows how two
computers can communicate with each other using modems. This is the
only way to connect them when the computers are physically separated by
a long distance. Now consider the situation where the computers are close
to one another. In that case you add the expense of the modems, plus you
are limited in the maximum baud rate you can use. A null modem cable
eliminates the need for a modem entirely, by allowing a direct connection
between two DTE devices.

Crescent Sohware, Inc. ■ 4- 7

Chapter 4: Communications TuJorial PDQCcmm

l!J
Transmit Transmit

~.
Data Data

fleceive Receive r=---J},
Data Data

-~

Microcomputer A MicrocomputRr B

I Figure 4-5. Principle of a Null Modem Cable.

TD @ Transmit Data (] TD

RD G) Receive Data G) RD
RTS

I
~ RTS

CTS CTS
DSR

~
DSR

GND Ground
GND

DCD DCD
DTR @) DTR

I Figure 4-6. A 3-Une Null Modem Cable.

TD @ (] TD

RD G) @) RD

RTS G (3) RTS

CTS

~ ~ CTS
DSR DSR
GND G GND
DCD

~ DCD
DTR DTR

I Figure 4-7. A 7-Une Null Modem Cable.

■ 4-8 Crescent Software, Inc.

PDQCcmm Chapler 4: Communications TuJcrial

Figure 4-5 illustrates the principle of a null modem cable. By fooling each
device into thinking the other is a DCE device, you can communicate at
much higher baud rates, albeit at much shorter distances. Figure 4-6
shows a null modem cable that uses only three lines. However, with only
three lines you cannot use hardware handshaking such as CTS/RTS or
DSR/DTR. Figure 4-7 shows a null modem cable that requires 7 lines
and also supports hardware handshaking.

These null modem cables will work in most cases as shown; however,
some serial printers may require minor changes.

Table 4-1
A 9 Pin To 25 Pin Adapter

9-Pln Connector 25 Pin Connector

DCD 1 B
RD 2 3
TD 3 2
DTR 4 20
GND5 7

DSR 6 6

ATS 7 4

CTS B 5

RI 9 22

Now consider the problem of connecting to computers when one has a
25-pin connector and the other has a 9-pin. In this case you must make
or purchase an adapter. Most serial ports that use 9-pin connectors also
come with an adapter to convert it to a 25-pin port. If you are handy with
a soldering iron you can easily create your own 9-to-25 pin adapter, as
shown in Table 4-1. A standard adapter will contain a 9-pin female and
a 25-pin male. Of course, you can use whatever gender suits your
purposes.

The final problem you may encounter is having two connectors of the same
gender that must be connected. Again, you can either purchase these or
make your own. (Usually these adapters are grossly overpriced, and
besides, you're never to old to learn how to solder.) We recommend using
short (I to 4 inch) pieces of ribbon cable in conjunction with inexpensive
snap-on connectors of the same gender. In fact, snap-on connectors
eliminate the need for soldering entirely. Using two 25-pin male connec­
tors allows you to connect two 25-pin female connectors, and vice versa.

Crescent Software, Inc. ■ 4-9

Chapter 4: Communications TworiaJ PDQCamm

MODEMS

Modems provide a way to connect computers over long distances through
public telephone lines. Back in the days when 64K was considered all the
memory a PC would ever need, a 300 BPS modem was state of the art.
If you have ever used a 300 BPS modem, you know how frustrating and
slow communications can be at that speed. However, modems are now
available that can operate at 32 times this speed.

Originally, the main problem facing modem manufacturers who attempted
to achieve higher speeds was the inability of phone lines to handle the high
frequencies necessary to accommodate higher baud rates. The bandwidth
of the phone system limits the modulation to either 1200 or 2400 baud,
depending on the modulation method employed. Then Hayes developed
a modulation technique that allowed their modems to transmit two bits of
information for each change in the line state. This modulation technique
is called quadrature phase shift keying, and a description of how it works
is beyond the scope of this manual. But by using this technique, Hayes
was able to create a 1200 BPS modem that operated at 600 baud. Because
of this breakthrough Hayes is now a standard, and most modems you see
these days claim to be Hayes compatible. Other recent modulation
techniques allow 4 or more bits to be encoded into each baud.

As of this writing, 2400 BPS modems can be purchased for about $ 100.
9600 baud modems are also quickly gaining in popularity, due to the
institution of a recent standard. Originally, there was no standard for 9600
BPS modems, so if you bought one you could communicate only with
modems made by the same manufacturer. Modems are now available that
have a throughput rate of up to 38400 BPS using a variety of schemes
including data compression. Table 4-23 following contains a listing of
some common modem standards.

STANDARD

Bell 103
V.22
V.22bis
V.32
V.32bis
V.42
V.42bis

■ 4- 10

Table 4-2
Common Modem Standards

DESCRIPTION

Used by most 300 BPS modems
Hayes smartmodem 1200mb
2400 BPS extension to V.22
9600 BPS full duplex
14400 BPS extension to V.32
Error correcting protocol for above
Lempel-Ziv compression

BAUD BPS

300 300
600 1200
600 2400

2400 9600
2400 14400

N/A N/A
N/A 38400

Crescent Software, Inc.

PDQ<:omm Chapter 4: Communications Traorial

If you plan to purchase a state of the art modem, you should look for a
V.32 modem that employs V.42 error correction and V.42b data compres­
sion. This guarantees that your modem will he able to connect with most
other high speed modems in the future. Currently, these modems cost
around $600; however, the price continues to drop as more and more
manufacturers enter the market.

All modems are controlled by sending special commands. These com­
mands are commonly referred to as Hayes "AT" commands, because
Hayes defined them using an "AT" (attention) prefix string to tell the
modem that a subsequent command is coming. Appendix A contains a
description of the most common AT commands.

UARTs

The word UART stands for Universal Asynchronous Receiver Transmitter,
and it is at the heart of every serial communications port. A UART can
be thought of as a type of parallel to serial converter. It accepts parallel
data one byte at a time from the CPU, and converts it to the equivalent
stream of serial bits that are actually transmitted. The UART also receives
serial bits, and converts them into bytes that the CPU can digest.

The IBM PC uses the National Semiconductor 8250 family of UARTs for
its serial port. Currently, there are three generations in this family, with
each offering improved performance over its predecessor. We will briefly
discuss each member of this family.

The INS8250-B UART
The INS8260-B was used in the original IBM PC. and continues to be used
in most serial ports today. The basic features of this UART include:

• Utilizes interrupt driven transmit, receive. line status, and data set
functions.

Includes Modem control functions (CTS. RTS. DSR, DTR, RI, and
DCD).

• Line break generation and detection.

Table 4-3 following provides a summary of the registers available for
controlling this UART.

To access a particular register, start with the base address of the serial
port, and then add the register offset found in the table. Note that some
of these registers share the same address. specifically offsets O and I.

Crescent Sohware, Inc. ■ 4 - 11

Chapter 4: Communications TUlorial PDQCcmm

well as in high speed modems. Notice that the original part contained a
bug which rendered the FIFO Buffers useless. The "A" version of this
UART fixes the bug and allows correct FIFO operation.

SUMMARY
This section provided a brief overview of serial communications in
general, and also discussed some of the specific hardware details within
a serial port. In particular, you learned how characters are translated into
the bits that are actually transmitted, and how special control wires are
used to implement hardware handshaking. Finally, a comparison of
various types of UARTS found in IBM PC compatible computers was
given. For a more comprehensive description of UART's, we highly
recommend the Nation Semiconductor data book entitled "Advanced
Peripherals - Data Communications, Local Area Networks, UARTs".

■ 4 - 14 Crescent Software, Inc.

APPENDIX -A

PDQComm

STANDARD HAYES "AT"
COMMANDS

Appendix -A

All Hayes-compatible modems recognize a standard set of commands, to
control various aspects of the modem's operation. Most of these com­
mands begin with the letters "AT", which stands for Attention. For
example, the ATDT command tells the modem to access the phone line
and dial a number.

The following list of commands is not complete, but it does contain those
that are most commonly used. You should consult your modem manual
for information on the more advanced commands. Note that all commands
must be followed by a CHR$(13) carriage return, except "+ + +" and
"Al". Also note that many modems require these commands to be sent
in upper case.

+ + + On line escape sequence. Using this sequence returns the
modem to command mode from on-line mode. On-line mode is when you
are connected to a remote system. In order for your modem to recognize
the escape sequence, you must not send any characters to the modem for
at least I second before and after the escape sequence. This is generally
used to get the modem's attention so you can send an "ATH" command
to force it to hang up the line. The modem responds with OK when it
goes into command mode. At that point you may issue any of the AT
commands.

ATO This returns the modem to on-line mode after the "+ + +"
escape sequence has put it into command mode. Note that the "O" is an
upper case letter, and not a zero.

Al Execute last command sent. Al does not need a terminating
carriage return.

ATA Answer phone. This command tells the modem to pick up the
phone and attempt to connect with a remote modem.

ATDx Dial a telephone number. The x is replaced with P for pulse
dialing or T for touch tone dialing. For example, to call the Crescent
Software Support BBS, you would issue the following string to the modem:

"ATDTl-203-426-5958" + CHR$(13)

If you have rotary (pulse) dialing, you would replace the T with a P.

Crescent Sohwere, Inc. ■ A - 1

Appendix-A PDQCcmm

If your phone is on a PBX system and requires you to dial 9 and wait for
a dial tone, you can add a comma between the 9 and the rest of the number
as shown below:

"ATIJf9,1-203-426-5958" + CHR$(13)

The comma specifies a 2 second pause. For longer pauses simply use
multiple commas. You may also use the S-8 register to change the delay
time for each comma received. (See the section that describes the
S-registers below.)

ATEn Echo all commands to the local display. The n is replaced
by either O or I. ATEO disables character echo in command mode, and
you will not see subsequent AT commands on your PC as you type. ATE!
enables command echo to the screen, which is the default for most
modems. Typing ATE alone is the same as ATEO.

ATHn Hook switch control. The n value is either O or I. ATHO
causes the modem to hang up (go on-hook). ATH I causes the modem to
pick up the line (go off-hook). ATH I is not the same as ATA because the
modem will not try to connect when ATH I is used. You could use ATHI
if you want your BBS to return a busy signal to callers. Using ATH alone
is equivalent to ATHO.

ATMn Speaker Control. The n values range from O through 2.
ATMO keeps the speaker turned off at all times, ATM! keeps the speaker
on until a carrier is detected, and ATM2 keeps the speaker on at all times.
The default for most modems is ATM 1.

ATQn Result code control. Then value is either O or I. ATQO tells
the modem to echo the result of each AT command to the local display,
and ATQ I disables echo. In most cases you will not want to disable the
result codes because they can be used by your programs to determine the
success or failure of an operation. The default for most modems is ATQO.

ATSr? Read S-Register. S-registers control many modem functions
and are described below. The r is replaced with the register number you
want to read. For example, to read S-register O you would send the
command string "ATSO?". The modem then returns the current setting
to the console for display.

ATSr=n Set S-Register. This command will set the specified
S-register r to the value you assign as n. For example, sending "ATSS= I"
tells the modem to pause only one second for each comma received instead
of two.

■ A -2 Crescent Software, Inc.

PDQComm Appendix -A

ATVn Select resulJ codeformaJ. Then value is either 0 or I. ATV0
selects the short form of result codes, which display either one or two
digits. ATV I specifies the long form of result code. Long codes return
a text string that describes the result in words. Table A-1 shows some
common result codes and their meanings. The default for most modems
is ATV!.

ATXn Extended resulJ code selection. We have found this com­
mand to mean different things with different modems. The n value tells
the modem how many different result codes you want. For example, ATX0
restricts the range to 300 BPS-compatible result codes, which is only
CONNECT. Most modems use ATX4 to enable all result codes, but you
should check your modem manual to be certain.

ATZ Modem reset command. This command restores the modem
to the power-on default configuration set in ROM or non-volatile RAM.
Depending on your modem brand and model, you may be able to store
selected modem default settings that are retained even when the power is
turned off.

SHOKl'FORM
0
1
2
3
4
5
6
7
8
10

S-REGISTERS

TABLE A-1
MODEM RESULT CODES

LONG FORM MEANING
OK Command received okay
CONNECT Connect at 300 BPS
RING Ring detected
NO CARRIER No carrier detected
ERROR Error in command
CONNECT 1 200 Connect at 1 200 BPS
NO DIAL TONE No dial tone found
BUSY Busy signal
NO ANSWER No answer
CONNECT 2400 Connect at 2400 BPS

The S-Registers define various modem configuration settings, and are
specified using the ATS command as described in the preceding section.
For example, register SO lets you specify how many times the phone must
ring before the modem is to answer it. You may read and write these
registers, using the ATS command described earlier.

SO Ring to answer. Specifies the number of times the phone must
ring before the modem will pick up. If set to 0. auto answer is disabled.

Crescent Software, Inc. ■ A -3

Appendix -A PDQComm

S1 Ring counJ. Counts the number of rings. Resets to 0 if a ring
is not sensed within any 8-second interval. SI operates only when SO is
set to a value greater than 0.

S2 Escape code character. Sets the ASCII value of the character
used to send an escape sequence. The default is 43 (+).

S3 Carriage return character. Sets the ASCII value of the character
recognized as a carriage return. The default is 13.

S4 Line feed character. Sets the ASCII value of the character
recognized as a line feed. The default is 10.

S5 Backspace character. Sets the ASCII value of the character
recognized as a backspace. The default is 8. This register is limited to
values between 0 and 32.

S6 WaiJfordial tone. Sets the numberof seconds the modem should
wait for a dial tone before returning a "NO DIAL TONE" message.

S7 WaiJ for carrier after dial. Sets the number of seconds the
modem should wait for a carrier after dialing before issuing a "NO
CARRIER" message.

S8 Pause time for comma. Sets the number of seconds to pause for
each comma encountered within an ATD (dial) command. The default is
2 seconds.

S9 Carrier detect response time. Sets the number of seconds a
received carrier must be present for before the modem will recognize it
as a valid carrier signal.

S10 Lost carrier to hang up delay. Sets the number of seconds the
modem should wait before hanging up the line when the carrier is lost.

S25 Delay to DTR. This is the number of seconds the DTR line
must be false before the modem is to hang up the line.

■ A -4 Crescr,nt Softwarfl, Inc.

APPENDIX - B

PDQCcmm

TERMINAL EMULATION CONTROL
CODES

This section documents all of the control codes that are recognized by the
various emulations provided with PDQComm. Note that character code
values are enclosed in parenthesis, and except for the Data General D215
are given as decimal numbers. The symbols row, col, and# are used to
indicate a numeric value you provide that specifies either a row, a column,
or some other numeric parameter.

TIY CONTROL CODES RECOGNIZED BY TIYDISP.BAS

CODE (DECIMAL)
(7)
(8)
(9)
(10)
(12)
(13)

FUNCT1ON
Beep
Backspace
Tab
Line Feed
Form Feed (Clear Screen)
Carriage Return

ANSI CONTROL CODES RECOGNIZED BY ANSIDISP.BAS

CODE(DECIMAL)
(7)
(8
(9)
(10)
(12)
(13)
(27)(91)row(59)col(72)
(27)(91)row(59)col(70)
(27)(91)#(65)
(27)(91)#(66)
(27)(91)#(68)
(27)(91)#(69)
(27)(91)(115)
(27)(91)(117)
(27)(91)(50)(74)
(27)(91)(75)
(27)(91)#(59)#(59)(109)

Crescent Sohware, Inc.

FUNCT1ON
Beep
Backspace
Tab
Line Feed
Form Feed (Clear Screen)
Carriage Return
Set Absolute Cursor Position
Set Absolute Cursor Position
Move Cursor Up # Lines
Move Cursor Down # Lines
Move Cursor Forward # Columns
Move Cursor Backward # Columns
Save Cursor Position
Restore Cursor Position
Erase Display
Erase Line
Set Graphics Rendition

■ 8- 1

Appendix-B PDQComm

The sequence #(59) above may be repeated as often as needed, where the
value given as # is as follows:

0 - All Attributes Off
1 - Bold On
4 - Underline On
5 - Blink On
7 - Reverse Video On
8 - Concealed On

30 - Black Foreground
31 - Red Foreground
32 - Green Foreground
33 - Yellow Foreground
35 - Magenta Forground
36 - Cyan Foreground
37 - White Foreground
40 - Black Background
41 - Red Background
42 - Green Background
43 - Yellow Background
44 - Blue Background
45 - Magenta Background
46 - Cyan Background
47 - White Background

DATA GENERAL D215 CODES RECOGNIZED BY D215DISP.BAS

CODE (OCTAL)
(007)
(004)
(003)
(017)
(016)
(015)
(032)
(010)
(031)
(030)
(027)
(035)
(034)
(013)
(036)(106)(106)
(014)
(012)

■ B-2

FUNCT1ON
Beep
Blink Disable
Blink Enable
Blink Off
Blink On
Carriage Return
Cursor Down
Cursor Home
Cursor Left
Cursor Right
Cursor Up
Dim Off
Dim On
Erase To End Of Line
Erase To End Of Screen
Erase Screen
New Line

Crescent Software, Inc.

PDQv,mm

(002) or (036)(l05)
(026) or (036)(l04)
(025)
(024)
(020)(col)(row)

Reverse Video Off
Reverse Video On
Underscore Off
Underscore On
Set Absolute Cursor Position

VT52 CONTROL CODES RECOGNIZED BY VT52DISP.BAS

CODE (DECIMAL)
(7)
(8)
(9)
(10)
(12)
(13)
(27)(65)
(27)(66)
(27)(67)
(27)(68)
(27)(72)
(27)(73)
(27)(74)
(27)(75)
(27)row co1(89)

FUNC110N
Beep
Backspace
Tab
Newline
Form Feed (Clear Screen)
Carriage Return
Cursor Up
Cursor Down
Cursor Right
Cursor Left
Cursor Home
Reverse Line Feed
Erase To End Of Screen
Erase To End Of Line
Set Absolute Cursor Position

Appendix-8

VT100 CONTROL CODES RECOGNIZED BY VT10DISP.BAS

CODE (DECIMAL)
(7)
(8)
(9)
(10)
(12)
(13)

IF VT52 COMPATIBLE MODE

CODE (DECIMAL)
(27)(65)
(27)(66)

Crescent Software, Inc.

FUNCT10N
Beep
Backspace
Tab
Line Feed
Form Feed (Clear Screen)
Carriage Return

FUNCT10N
Cursor Up
Cursor Down

■ 8-3

Appendix-B

(27)(67)
(27)(68)
(27)(72)
(27)(73)
(27)(74)
(27)(75)
(27)row col(89)

IF ANSI COMPATIBLE MODE

CODE (DECIMAL)
(27)(91)row(59)col(72)
(27)(91)row(59)col (70)
(27)(91)#(65)
(27)(91)#(66)
(27)(91)#(68)
(27)(91)#(69)
(27)(91)(115)
(27)(91)(117)
(27)(91)(74) or
(27)(91)(48)(7 4)
(27)(91)(49)(74)

(27)(91)(50)(74)
(27)(91)(75) or
(27)(91)(48)(75)
(27)(91)(49)(75)

(27)(91)(50)(75)
(27)(91)#(59)#(59)(109)

Cursor Right
Cursor Left
Cursor Home
Reverse Line Feed
Erase To End of Screen
Erase To End of Line
Set Absolute Cursor Position

FUNCTION
Set Absolute Cursor Position
Set Absolute Cursor Position
Move Cursor Up # Lines
Move Cursor Down # Lines

PDQComm

Move Cursor Forward # Columns
Move Cursor Backward # Columns
Save Cursor Position
Restore Cursor Position

Erase From Cursor To End Of Screen
Erase From Beginning Of Screen

To Cursor
Erase Entire Screen

Erase From Cursor To End Of Line
Erase From Beginning Of Line

To Cursor
Erase Entire Line
Character Attributes

The sequence #(59) above may be repeated as often as needed, where the
value given as # is as follows:

0 - All Attributes Off
1 - Bold On

-4 - Underline On
5 - Blink On
7 - Reverse Video On

■ B-4 Crescent Software, Inc.

Index

PDQComm

INDEX

A

B

C

D

AT Command Set 4-11, Appendix A
AdjustRecBuffer . 3-1
ANSI Emulation . 2-12 to 2-17, 3-33

ANSIInit 3-34
ANSIPrint . 3-34

ANSI.SYS 2-11 to 2-17
ASC .. 2-3
ASCII File Transfer . 2-17 to 2-18
ASCIIReceive% 3-2
ASCIISend % 3-3
Asynchronous Communications . 4-1

Baud 4-3
BIN 2-3
BIOSinkey 3-3
BIOSPrint 3-4
Bits Per Second 4-3
Bulletin Board System (BBS) 1-1, 2-8 to 2-10

Carrier Detect 4-6
Carrier% 3-4
CD[n] 2-4
Checksum$ 3-5
CloseCom 3-6
CLS 2-15
COLOR 2-11, 2-13, 2-15
ComEof% . 2-5, 3-6
Comlnput$ 2-5, 2-10, 3-7
ComLinelnput 2-10, 3-8
ComLoc% 2-5, 3-9
ComPrint 3-9
CRC16$ 3-10
CS[n] 2-4
CTS/RTS 2-6 to 2-7, 4-6

D215 Emulation 2-12 to 2-17
D215Init 3-33
D215Print 3-34

Data Set Ready 4-5

Crescent Software, Inc.

Index

■

Index PDQComm

Data Terminal Ready 4-5
DCE 4-4
DS[n] 2-4
DTE .. 4-S
DTR 3-10

E
EOFO 2-5

F
Far Strings 2-1
File Transfers 2-17 to 2-18

ASCI!Receive% 3-2
ASCI!Send % 3-3
Checksum$ 3-S
CRC16$ 3-10
XModemReceive% 3-30
XModemSend% 3-31
XStat 2-17

FlushBuffer 3-11
Full Duplex 4-1, 4-3

G
GetComPorts 3-11
GetLineStatus 3-12
GetPortConfig 2-8, 3-13

H
Half Duplex 4-3
Handshaking . 2-Q to 2-7, 4-7

CTS/RTS 4-S
RTS 3-23
SetHandshaking 3-29
XOff% 3-33
XONIXOFF 1-5, 2-S - 2-7

Hayes 4-10, Appendix A

INPUT$ 2-5
IRQ Restrictions 1-5

OpenComX 3-16

L
LF ... 2-3
LINE INPUT 2-10

■ 2 Crescent Software, Inc.

PDQComm Index

LOCO 2-5
LOCATE 2-11, 2-13, 2-15

M
Mark State 4-1
ModemType 3-13, 3-18
Modems 4-9

AT Command Set 4-11, Appendix A
Hayes 4-10, Appendix A
Null Modem . 4-4, 4-7 to 4-8

Multiple Emulation Windows 2-16

N
NS16550 1-5, 4-14
Null Modem 4-4, 4-7 to 4-8

0
OneColor% 3-14
OPEN "COM" 2-3

ASC 2-3
BIN 2-3
CD[n] 2-4
CS[n] 2-4
DS[n] 2-4
LF 2-3
OP[n] 2-4
RS 2-4
TB[n] 2-4

OpenCom 2-3, 2-5, 3-14
GetLineStatus . 3-12
SetActivePort 3-25

OpenComX : 3-1, 3-16
AdjustRecBuffer 3-1
SetCom 2-8, 3-26

OP[n] 2-4
OverRun% 3-17

p

Parity 4-2
ParseComParam . 3-18
Pause 3-19
PDQExist% 3-19
PDQParse$ 3-20
PDQPrint 2-10, 3-21
PDQRestore 3-22
PDQTimer & 3-22

Crescent Software, Inc. ■ 3

Index PDQComm

PDQVall 3-23
PDQValL 3-23
PRINT 2-10

Q
Quick Libraries 2-2

R
Receive Buffer 2-6

AdjustRecBuffer 3-1
FlushBuffer 3-11
OverRun% 3-17

RS ... 2-4
RS-232C 4-4

Carrier Detect . 4-6
Carrier% 3-4
Data Set Ready 4-5
Data Terminal Ready 4-5
DCE 4-4
DTE 4-5
Full Duplex 4-1, 4-3
Half Duplex 4-3
Parity 4-2
Simplex 4-3

IITS/CTS . 2-6 to 2-7
RTS 3-23

s
ScanCodes % 3-24
SendBreak 3-24
SetActivePort 3-25
SetANSIWindow 3-30
SetCom 2-8, 3-26
SetComPrintTO 3-27
SetD215Window 3-30
SetDelimitChar 3-28
SetFIFO 3-28
SetHandshaking 3-29
SetMCRExit 3-29
SetTTYWindow 3-29
SetVTlOOWindow 3-29
SetVT52Window 3-29
Simplex 4-3
Space State 4-2
Synchronous Communications 4-1

■ 4 Crescent Software, Inc.

PDQComrn Index

T
TB[n] 2-4
Terminal Emulations 2-11 to 2-17, Appendix B

Multiple Emulation Windows , , , , ... 2-16
SetuuWindow 3-29
x.uxlnit 3-33
x.uxPrint 3-34

TermType 2-12 to 2-17
TSR 2-11
TTY Emulation 2-12 to 2-17

TTY!nit 3-34
TTYPrint 3-34

u
UARTS 4-11 to 4-14

NS16550 1-5, 4-15
SetFIFO 3-28

UARTType% 3-32

V
VTIOO Emulation 2-12 to 2-17

VTIOOinit 3-34
VTIOOPrint 3-34

VT52Emulation ,, 2-12to2-17
VT52Init 3-34
VT52Print 3-34

X
XMODEM 2-17 to 2-18
XModemReceive% 3-30
XModemSend% 3-31
XOff% 3-33
XON/XOFF 1-5, 2-5 to 2-7
XStat 2-17

Crescent Software, Inc. ■ 5

11 BAILEY AVENUE. RIDGEFIELD. CONNECTICUT 06877 CRESCENT
PHONE: {203) 438-5300 - SALES 1-800-35-BASIC so~ rwARf 1Nc

'.'<.

	0003
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112

